
www.excellium-services.com

March 16, 2017

Audit Sécurité
Test Intrusion
La Confiance n’exclut pas le Contrôle,
Evaluez Votre Vulnérabilité !

TRAINING KIT – CODE1
Secure Coding

TLP: WHITE

Secure Coding

Agenda

 Introduction

 Application Security Overview

 How to improve?

 Application security

 Common Attacks

 Common Defenses

 Secure Coding principes

 Interesting links

 Q&A

Introduction

Secure Coding

Application Security Overview

NO

YESYou already
have been

hacked

Secure Coding

Application Security Overview

NO

YES

YES

NO

You already
has been
hacked

You will be
hacked

Secure Coding

Application Security Overview

NO

YES

YES

NO

You already
has been
hacked

You will be
hacked

Let’s discuss
more !

Secure Coding

 Who uses prepared statement in SQL? Even for custom search requests?

 Who had to use real crypto in a project? Was it simple?

 Who runs the application server as administrator?

 Who uses a CUSTOM security manager?

 Who uses maven? Who checks for vulnerabilities in installed artefacts?

 Who only checks data coming from user or third-party system for validity

from a business point of view?

Application Security Overview

Secure Coding

Application Security Overview

NO

YES

YES

NO

You already
has been
hacked

You will be
hacked

I didn’t know I was being
hacked

Let’s discuss
more !

Next step

Secure Coding

Application Security Overview

Language
C

1970

First
Virus

1971

First
Antivirus

1987

1996

Stack Base
Buffer overflow

Polymorphism

1987

First
Firewall

1990

ROP

1997

DEPASLR

2001 2004

Example: Operating System issues

Anyone
else?

2014

Secure Coding

 More than 10 years (19711987) to find a (weak) countermeasure to

viruses

 More than 8 years (19962004) to fix the buffer overflow issues.

 But now…

 The attackers are not working anymore on operating systems, they are

on the application level (web & mobile).

Application Security Overview

Secure Coding

 Most of the web sites are vulnerable to attacks

 A lot of components are now using the web (Webmails, online store, eBanking…)

 Mobile application are often:

 Web mobile application (application on device is just a wrapper)

 Native mobile application consuming web services exposed by a web backend

 There is no simple way to control what an App is doing on a mobile device.

And…

Application Security Overview

Secure Coding

One thing that has changed with web applications on the Internet

Application Security Overview

Private
network

Internet

Company A

Company B

Private
network

Company A

Company B

« In the past »

- Communication only between companies,
- Company information system accessed by is employees.

Customers
Partners

Today

- Communication between companies, customers, partners,
- Company information system accessed by employees, partners and
customers.

Secure Coding

 Identity theft

 IT downtime

 SLA issues

 Financial loss

 Reputation in media

Consequences of a bad security

Application Security Overview

Secure Coding

From the Verizon DataBreach 2016 report

Application Security Overview

Secure Coding

From the Verizon DataBreach 2016 report

Application Security Overview

Secure Coding

From the Verizon DataBreach 2016 report

Application Security Overview

Secure Coding

 With a firewall?

 With an IPS?

 With a web application firewall?

 From your own users?

 Your internal applications?

Can the infrastructure protect your application?

Application Security Overview

Secure Coding

 With a firewall? NO

 With an IPS?

 With a web application firewall?

 From your own users?

 Your internal applications?

Can the infrastructure protect your application?

Application Security Overview

Secure Coding

 With a firewall? NO

 With an IPS? NO

 With a web application firewall?

 From your own users?

 Your internal applications?

Can the infrastructure protect your application?

Application Security Overview

Secure Coding

 With a firewall? NO

 With an IPS? NO

 With a web application firewall? It depends

 From your own users?

 Your internal applications?

Can the infrastructure protect your application?

Application Security Overview

Secure Coding

 With a firewall? NO

 With an IPS? NO

 With a web application firewall? It depends

 From your own users? NO

 Your internal applications?

Can the infrastructure protect your application?

Application Security Overview

Secure Coding

 With a firewall? NO

 With an IPS? NO

 With a web application firewall? It depends

 From your own users? NO

 From another internal applications? NO

Can the infrastructure protect your application?

Application Security Overview

Secure Coding

BUT… I’m performing pentests once a year!

Application Security Overview

Secure Coding

Network and security devices

Application components

Web/Application servers

Application containers

Frameworks and libraries

Middlewares

Database

Business logic

Custom code

Communication channel

Configuration
audit coverage

Classical
assessment coverage

Code review
coverage

o
b

fu
sc

at
io

n
le

ve
l

Ways to identify threats in applications

Secure Coding

Agenda

 Introduction

 Application Security Overview

 How to improve?

 Application security

 Common Attacks

 Common Defenses

 Secure Coding principes

 Interesting links

 Questions

Secure Coding

How to Improve?

 Know your enemy

 Learn attacks vectors

 Learn exploitation steps

 Prepare your defense

 Include secure SDLC in the contract and in the design

 Secure coding

 Control your work

 Add security in your Continous Integration process

 Perform Code Review during project implementation (in each sprint/milestone)

 Audit your SDLC

Secure Coding

How to Improve ?

Application Security

Secure Coding

Agenda

 Introduction

 Application Security Overview

 How to improve?

 Application security

 Common Attacks

 Common Defenses

 Secure Coding principes

 Interesting links

 Questions

Secure Coding

Common Attacks

Client Database

SQL Transaction HTTP(s)

Cross site
scripting

Web
server
exploit

www.evil.com

vulnerable.com

Cookie
stealing

Business logic
error

Language
exploit

SQL
injection

Path
traversal

Cookie
poisonning

Bad variable
control

File
upload

Phishing

Flash/Java
exploits

Secure Coding

Common Attacks

Client side Session side Server side Programming

language

side

Application

side

Data

side

XSS

Reflective

Persistant

DOM based

CSIT

Flash

Applets

(HTML5 Web

Sockets)

Clickjacking

Cookie fixation

Cookie stealing

Cookie guessing

CSRF

SOP bypass

(HTML5)

FingerPrinting

Exploit

Crowling

Path transversal

Http methods

File Extension

Http spliting

Http smuggling

Error message

Exploit

File inclusion

Variable control

Variable

Overwritting

Serialization

Error message

Business logic

Privilege

escalation

Replay

BufferOverFlow

Authentication

Code injection

WSDL discovery

SOAP XML DoS

XXE

Error message

SQL injection

SQL Wildcard

LDAP injection

XML injection

XPath injection

SMTP header

injection

Secure Coding

Agenda

 Introduction

 Application Security Overview

 How to improve ?

 Application security

 Common Attacks

 Common Defenses

 Secure Coding principes

 Interesting links

 Questions

Secure Coding

Common Defenses
WAF WAF Patch

management

IPS/WAF WAF WAF

Client side Session side Server side Programmin

g language

side

Application

side

Data

side

XSS

Reflective

Persistant

DOM based

CSIT

Flash

Applets

(HTML5 Web

Sockets)

Clickjacking

Cookie fixation

Cookie stealing

Cookie guessing

CSRF

SOP bypass

(HTML5)

FingerPrinting

Exploit

Crowling

Path transversal

http methods

File Extension

Http spliting

Http smuggling

Error message

Exploit

File inclusion

Variable control

Variable

Overwritting

Serialization

Error message

Business logic

Privilege

escalation

Replay

BufferOverFlow

Authentication

Code injection

WSDL discovery

SOAP XML DoS

XXE

Error message

SQL injection

SQL Wildcard

LDAP injection

XML injection

XPath injection

SMTP header

injection

Secure Coding

Common Defenses
WAF WAF Patch

management

IPS/WAF WAF WAF

Client side Session side Server side Programmin

g language

side

Application

side

Data

side

XSS

Reflective

Persistant

DOM based

CSIT

Flash

Applets

(HTML5 Web

Sockets)

Clickjacking

Cookie fixation

Cookie stealing

Cookie guessing

CSRF

SOP bypass

(HTML5)

FingerPrinting

Exploit

Crowling

Path transversal

http methods

File Extension

Http spliting

Http smuggling

Error message

Exploit

File inclusion

Variable control

Variable

Overwritting

Serialization

Error message

Business logic

Privilege

escalation

Replay

BufferOverFlow

Authentication

Code injection

WSDL discovery

SOAP XML DoS

XXE

Error message

SQL injection

SQL Wildcard

LDAP injection

XML injection

XPath injection

SMTP header

injection

Secure Coding Principles

Secure Coding

Secure Coding principles

 Never trust (user) input, use filters

 Never trust… untrusted interfaces

 Deep application defense is mandatory (several layers of defense)

 ALWAYS follow the least privilege principle

 Remember the application will be for users and not security experts

 Log separately application non user related events and user related events

Secure Coding

Secure Coding principles

 Do not give information on application failure (crash)

Secure Coding

Secure Coding principles

 Clean critical state on exception handler

Secure Coding

Secure Coding principles

 Don’t try to hide your code from the reviewers

Secure Coding

Secure Coding principles

 Comment your contributions but only on server side components in

order to avoid to give information to an attacker about your system

Secure Coding

Secure Coding principles

 Hide, as much as possible, technical information about your application

Help in attack preparation by:

- Analysing offline source codes and

binaries in order to find new

vulnerabilities

- Searching for public vulnerabilities

Secure Coding

Secure Coding principles
 To protect from the attackers, obfuscation is a possible idea.

Obfuscation is not the solution because:

 Obfuscation will not defeat attackers but will make security components

uneffective.

 Obfuscation will just delay the attacker to understand the obfuscated target

 Uneffective when facing a motivated attacker

 Be evil, test yourself!

 Define a aggressiveness policy used by the application (ex: lock account after a

defined number of input validation issues in a business feature…)

Secure Coding

Secure Coding principles

 Controls have to be simple and documented

 Controls have to be done systematically

 Controls have to be functional

 Controls have to use libraries (do not reinvent the wheel) coming from

trusted providers (ex: OWASP).

Controls

Applications should be able to detect unusual user actions and take

measures to defend itself.

Secure Coding

Secure Coding principles

Minimum Controls
 Authentication

 Session management

 Authorization

 Input validation and Output encoding

 Error handling and Logging

 Audit Trail

 Trusted network channel/storage:

 Data protection

 File system access

 Cryptography

 Enable defensive features in modern browsers

Secure Coding principles:

Authentication

Secure Coding

Secure Coding principles

Authentication

 Password length

 Important: more than 8 chars

 Critical: more than 10 chars

 High Critical: more than 14 chars or multi-factor authentication

 Password strength

 Following the application criticality:

 A least 1 upper case, 1 lower case, 1 special and 1 digit

 Must not contains any part of login, username, first name, last name, birthdate

from the account owner

 Do regular dictionary attacks

Secure Coding

Secure Coding principles

Authentication: Password cracking stats overview

Secure Coding

Secure Coding principles

Authentication: Password cracking cloud service

Because everyone does not have
the infrastructure / time / space to
build a cracking system, kind guys
provide one as SaaS

Secure Coding

Secure Coding principles

Authentication

 Passwords are bad because they are static

 Guessable

 Forgotten

 Multi-Factor authentication

 Something the user has (mobile, token)

 Something the user knows (password, personal detail)

Secure Coding

Secure Coding principles

Authentication

 Let the user choose it

 Simple question to ask yourself during architecture phase: “Is it really

necessary to implement the ‘I forgot my password‘ feature?”

Secure Coding

Secure Coding principles

Authentication

 Sign critical transaction with a second authentication

 Force authentication to be in TLS

 Regenerate session once authenticated

 Audit the “change password” functionality

 Enforce account disabling after an established number of invalid login

attempts

 Change all vendor-supplied default passwords and user IDs or disable

the associated accounts

Secure Coding

Secure Coding principles

Authentication

 Use hashing

 Use non predictable Salt (secure random)

 Do not use old MD5,SHA1 (even SHA-256 for password hashing)

 Prefer PBKDF2 / SCRYPT

 https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

 https://cobalt.io/blog/secure-storage-of-passwords-in-your-

application-by-jim-manico

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://cobalt.io/blog/secure-storage-of-passwords-in-your-application-by-jim-manico

Secure Coding principles:

Session Management

Secure Coding

Secure Coding principles

Session management

 Protect your cookies

 Use the server or framework’s session management controls.

 Do not allow concurrent logins with the same user ID

 Do not expose session identifiers in URLs, error messages or logs

 Set the "secure" attribute for cookies transmitted over an TLS

connection

 Set cookies with the “HttpOnly” attribute, unless you specifically

require client-side scripts within your application to read or set a

cookie's value (ask yourself why JS is needed to access cookie?)

 Set the domain and path for cookies containing authenticated session

identifiers to an appropriately restricted value for the site

 Bind JavaScript events to close session

 Use JavaScript timers to automatically close sessions

Secure Coding

Secure Coding principles

Session management

Secure Coding principles:

Authorization

Secure Coding

Secure Coding principles

Authorization

 Consider all input as Evil!

 Without Access control, you cannot control the user in the application!

Secure Coding

Secure Coding principles

Authorization

 Two levels of authorizations are needed (defense in depth):

 In the application

 In the infrastructure

 Control the roles in each sub component

Secure Coding

Secure Coding principles

Authorization
 Segregate privileged logic from other application code

 Restrict access to files or other resources, including those outside the

application's direct control, to only authorized users

 Restrict access to protected URLs to only authorized users

 Restrict access to protected functions to only authorized users

 Restrict direct object references to only authorized users

 Restrict access to services to only authorized users

 Restrict access to application data to only authorized users

 Restrict access to user and data attributes and policy information used by

access controls

 Restrict access security-relevant configuration information to only

authorized users

 If state data must be stored on the client, use encryption and integrity

checking on the server side to catch state tampering (if possible, associate

client IP to is web session in order avoid “replay” attack).

Secure Coding

Secure Coding principles

Authorization

 Limit the number of transactions a single user or device can perform in a

given period of time.

 If long authenticated sessions are allowed, periodically re-validate a user’s

authorization.

 Implement account auditing and enforce the disabling of unused accounts

 The application must support disabling of accounts and terminating

sessions when authorization are removed.

 Service accounts or accounts supporting connections to, or from external

systems should have the least privilege possible

Secure Coding

Secure Coding principles

Authorization

 Create an Access Control Policy to document an application's business

rules, data types and access authorization criteria and/or processes so

that access can be properly provisioned and controlled. This includes

identifying access requirements for both the data and system resources

 Apply authorization check before to call any business processing method

 Apply authorization definition using url constraints (mapping) AND method

constraints (annotation)

To avoid authorization misconfiguration
the « Deny by default » should be used !

Secure Coding principles :

Input Validation

Secure Coding

Secure Coding principles

Input Validation

 Conduct all data validation on a trusted system (e.g. the server)

 Identify all data sources and classify them into trusted and untrusted.

 Validate all data from untrusted sources (e.g. databases, file streams, etc.)

 There should be a centralized input validation routine/API for the

application

 Specify proper character sets, such as UTF-8, for all sources of input

Secure Coding

Secure Coding principles

Input Validation

 Consider validating data along all the entry points of the application

borders
 API

 User input

 Middleware

 Database

Secure Coding

Secure Coding principles

Input Validation: Whitelist

 Reject unvalidated data

 Validate Data
 Java Types

 Numeric Ranges

 Regular Expression:

 Document precisely them because everyone is not a master in RegEx and in

maintenance phase of an application, it is “easy” to break the initial goal of the

RegEx

 Expected length

 Expected values

 Whitelist if possible

 Character allowed repetition whitelist

Secure Coding

Secure Coding principles

Input Validation: Encoding

 Be careful with special chars ‘<>”%*&\;

 Search for known attacks
 Dot dot slash (../)

 New Line (%0D%AD \r\n)

 Null byte injection %00

 Non printable chars in XML documents

Secure Coding

Secure Coding principles

Input Validation: Pattern matching

 Be careful with special chars ‘<>”%*&\;

 Search for known attacks
 Dot dot slash (../)

 New Line (%0D%AD \r\n)

 Null byte injection %00

 Non printable chars in XML documents

Secure Coding

Secure Coding principles

Input Validation example: SQL context

 Be careful with special chars ‘<>”%*&\;

 Search for known attacks
 Dot dot slash (../)

 New Line (%0D%AD \r\n)

 Null byte injection %00

 Non printable chars in XML documents

Secure Coding

Secure Coding principles

Input Validation example: SQL context

 Be careful with special chars ‘<>”%*&\;

 Search for known attacks
 Dot dot slash (../)

 New Line (%0D%AD \r\n)

 Null byte injection %00

 Non printable chars in XML documents

What is wrong
here ?

Secure Coding

Secure Coding principles

Input Validation example : SQL context

Secure Coding

Secure Coding principles

Input Validation example: SQL context

Secure Coding

Secure Coding principles

Input Validation example: JPA/Entity context

What is wrong
here ?

Secure Coding

Secure Coding principles

Input Validation example: JPA/Entity context

Secure Coding

Secure Coding principles

Input Validation example: JPA/Entity context

Secure Coding

Secure Coding principles

Input Validation example: XML context
What is wrong

here ?

Secure Coding

Secure Coding principles

Input Validation example: XML context

Secure Coding

Secure Coding principles

Input Validation example: XML context
Check param before to use it

Secure Coding

Secure Coding principles

Input Validation example: XML context
Check using XSD

Secure Coding

Secure Coding principles

Input Validation example: XML context
Check using XSD

Secure Coding

Secure Coding principles

Input Validation example: LDAP context
What is wrong

here ?

Secure Coding

Secure Coding principles

Input Validation example: LDAP context

Secure Coding

Secure Coding principles

Input Validation example: LDAP context
Check param before to use it

Secure Coding

Secure Coding principles

Input Validation example: OWASP ESAPI validators

Secure Coding principles:

Output Encoding

Secure Coding

Secure Coding principles

Output encoding

 Encode on the server

 Defense in depth principle

 Again, centralize the encoder functions

 Sanitize the data sent to client

 HTML encode (minimum)

 HTML purifier

Secure Coding

Secure Coding principles

Output encoding: First try
What is wrong

here ?

Secure Coding

Secure Coding principles

Output encoding: First try

Secure Coding

Secure Coding principles

Output encoding: Second try

What is wrong
here ?

Secure Coding

Secure Coding principles

Output encoding: Second try

Secure Coding

Secure Coding principles

Output encoding: Good solution

Secure Coding principles:

Error Handling & Logging

Secure Coding

Secure Coding principles

Error Handling
 The application will crash

 Catch all exceptions without exception (even NullPointerException)

 Use a global handler in order to ensure that any “unexpected error case”

will be managed (using, for example, error page configuration feature)

 In case of exception, all layers under the root call layer “pass the

exception” above and the exception is managed at caller level

 Clear all sensitive data from exception code

 Don’t give detail, send a generic error message to the user like “A error

occur.”

 Logs are sensitive, are they world readable ? World writable ?

 If possible, don’t expose log traces into your application

 Document explicitly any “silent catch clause”, if possible simply avoid them

by adding, at least a log trace.

Secure Coding

Secure Coding principles

Error Handling
 Log events below non related to user action

 Exceptions (database connection failure, back end unavailable, out of

memory, no more space on disk…)

 Crypto issues (backend server TLS certificate validation failure…)

 Session management issues (server cannot create session…)

 Events related to a user (i.e. starting with a action from a user) are sent to

the Audit trail log

 Split your logs according to content type (severity level is used to classify

the importance of information)

 Application events

 Audit trail events (user events)

 Use API like LogBack (use SLF4J if your module must not force the

logging API implementation) to manage your logging and events

destination abstraction.

Secure Coding

Secure Coding principles

Error Handling: Log distribution approach explanation
 Most of the time application log files:

 Are not analyzed/reviewed unless in case of technical or business

error

 Have a history up to 2 month max (used to save disk space)

 Include events generated by application itself and by user

 Are not archived and not protected against injection/corruption

 Are not formatted in order to enable log review

 From a security point of view (your security department guys):

 It’s hard to track/detect action performed by a malicious user (directly

or through a malware) on a timeframe from 6 month to 1 year or that

application is under fingerprinting (attack in preparation)

 Require to separate application events from users events (or from a

specific user) Make it hard to integrate events into a analysis

system and then make it difficult to setup alerting/action rules

Secure Coding

Secure Coding principles

Error Handling: Log distribution approach explanation

Application

[1] Auto clean by rolling on 10 files
[2] Auto clean by rolling on 2 files but files are watched by a agent
 sending each new event to Monitoring system

Log files dedicated to
Application events [1]

Log files dedicated
to User events [2]

Agent

Monitoring system
(security oriented if

possible)

New event

Alerts
(mail, sms)

Reports / Dashboards
(pdf, html)

Live search
(log review)

Implementation example:
 Logging system:
LogBack
 Monitoring system:
Splunk
 Agent:
Splunk Universal Forwarder

Secure Coding

Secure Coding principles

Error Handling

What is wrong
here ?

Secure Coding

Secure Coding principles

Error Handling

Secure Coding

Secure Coding principles

Error Handling: Better

Secure Coding

Secure Coding principles

Error Handling: Global handler

Code level

Configuration level

Secure Coding principles:

Audit trail

Secure Coding

Secure Coding principles

Audit trail
 Objective:

 Used to track set of actions performed by a user on a period of time.

 Properties:

 Once wrote, a event (trace) cannot be modified or deleted

 Event should be sent to a centralized monitoring system (ex: Splunk)

in order to enable search, reporting and alerting

 Events must be archived (using the monitoring system) in order to

allow investigation about a security issue on application

 Accesses to events should be restricted to specific people role like

application administrator or company security department

 Event content must be protected against any form of injection (using

output encoding) or corruption

 Event format should use a standard format like “Common Event

Format” (objective is to facilitate log parsing by the monitoring system)

Secure Coding

Secure Coding principles

Audit trail
 Type of action tracked for a user:

 Authentication success and failure

 Authorization denied

 Input validation failure

 Action on business data (Create, Read, Update, Delete)

 Administrative actions (admin users are also tracked)

 Account disabling and enabling

 Any error related to user action like submitting an expired web session

ID, an invalid/unexpected cookie…

 Logout

Secure Coding

Secure Coding principles

Audit trail
 Information included into event:

 Current date & time

 User identifier (login and, if possible, client IP address)

 Application unique identifier:

 Used to identify application in monitoring system

 Correlation unique identifier (ex: UUID)

 Used to identify user action in a context of a application composed by

several modules (ex: Front End + Back End).

 This ID is shared in all modules and it has a session lifetime (generate it

during login phase and keep it into web session, don’t use web session ID

as correlation ID)

 Server name:

 Used in clustering context in order to identify target node

 Severity level (INFO / WARN / ERROR)

 Event detail

Secure Coding

Secure Coding principles

Audit trail
 Note about event detail:

 Detail must not contains any sensitive information like web session ID,

password, IBAN, credit card ID, Security social number…

 Technical ID can be used into detail in order to give business context

information about event (enable possibility to create specific alert in

monitoring system).

 Example of event detail:

 User “righettod” delete customer with reference ID “123”

 User “righettod” login failed using IP address “x.x.x.x”

 User “righettod” enter disallowed characters into field

“communication” of the “transfer” form

Secure Coding principles:

Data Protection

Secure Coding

Secure Coding principles

Data Protection
 Centralize sensitive data storage and access point (ex: internal stateless

web service) in order to enforce security on data access

 Protect sensitive data : encryption or secure hashing

 Do not cache sensitive data on client side (use cache HTTP headers)

 Clean sensitive data from server side (session/cache/memory) when they

are not needed anymore

 Trusted store for trusted data

 HTTP GET with parameter in URL is forbidden (use headers of HTTP GET

request to pass parameters to server)

 Simple question to ask yourself during architecture phase: “Do I really

need to store this information into my application or can I simply call the

provider each time and use memory caching if necessary ?”

Secure Coding principles:

FileSystem Access

Secure Coding

Secure Coding principles

FileSystem Access: path manipulation

What is wrong
here ?

Secure Coding

Secure Coding principles

FileSystem Access: path manipulation

Secure Coding

Secure Coding principles

FileSystem Access: path manipulation

Secure Coding principles:

Crypto

Secure Coding

Secure Coding principles

Crypto

 Use TLS v1.2 to secure data transport

 Use certificate revocation lists (CRL) and OCSP server to validate certificates

 Use AES 256 for data ciphering

 Do not become a crypto expert use recommandation from sources recognized in

security community:

 BetterCrypto project : https://bettercrypto.org/

 Mozilla: https://wiki.mozilla.org/Security/Server_Side_TLS

 Use client certificates with TLS mutual authentication to authenticate both partners

of a communication

 When applicable use certificates and public key pinning

 Failed HTTPS should stop:

 no certificate validation bypass

 No fallback to HTTP

 Use HTTP Strict-Transport-Security-Header

https://bettercrypto.org/
https://wiki.mozilla.org/Security/Server_Side_TLS

Secure Coding

Secure Coding principles

Crypto

 Crypto issue example

Secure Coding principles:

Enable defensive measure in

modern browsers

Secure Coding

Secure Coding principles

Defensive feature in modern browsers

 Modern browsers supports a set of special HTTP response headers that

change the way in which the browser process received content.

 Interesting headers are:

 “X-Frame-Options”: Indicate whether or not a browser should be

allowed to render a page in a <frame>, <iframe> or <object>

 “X-XSS-Protection”: Enables the Cross-site scripting (XSS) filter built

into most recent web browsers

 “X-Content-Type-Options”: Prevents Internet Explorer and Google

Chrome from MIME-sniffing a response away from the declared

content-type

 “Content-Security-Policy”: Define a policy used by the browser to

know how it must render the current response

 “Strict-Transport-Security”: Enforces secure (HTTP over TLS)

connections to the server

Secure Coding

Secure Coding principles

Defensive feature in modern browsers

Facebook disable browser XSS protection filter

Secure Coding

Secure Coding principles

Defensive feature in modern browsers

 Framework like Spring Security provide configuration to automatically add

somes of the presented headers into all HTTP responses

Secure Coding

Secure Coding principles

Defensive feature in modern browsers

 If your web framework do not have this type of feature then a simple JEE

web Filter can do the job

Secure Coding

Secure Coding principles

Defensive feature in modern browsers

 Enabling theses headers is not a « silver bullet » but it helps to add

another layer of defense

 Contribute to « Defense in depth » approach !

Interesting links

Secure Coding

Interesting links

 OWASP API:

 https://github.com/ESAPI/esapi-java

 https://github.com/owasp/java-html-sanitizer

 Maven plugin to check dependencies for known vulnerabilities:

 https://github.com/jeremylong/DependencyCheck

 OWASP Guides:

 http://www.lulu.com/spotlight/owasp

 Password cracking:

 https://www.owasp.org/images/a/af/2011-Supercharged-Slides-

Redman-OWASP-Feb.pdf

 http://resources.infosecinstitute.com/password-cracking-evolution/

https://github.com/ESAPI/esapi-java
https://github.com/owasp/java-html-sanitizer
https://github.com/jeremylong/DependencyCheck
http://www.lulu.com/spotlight/owasp
https://www.owasp.org/images/a/af/2011-Supercharged-Slides-Redman-OWASP-Feb.pdf
http://resources.infosecinstitute.com/password-cracking-evolution/

