
DISTRIBUTED OBJECT
AND COMPONENTS

Objectives
• Understand the development of distributed system
• Present middleware solutions for

• Distributed object
• Component based application

• Applications in a Java EE environment

Engineering problem
• How to build enterprise applications

• Safe
• Secure
• Scalable
• Available
• Extensible
• Cost effective

Fault tolerant systems
• The basic characteristics of fault tolerance require:

• No single point of failure
• Fault isolation to the failing component
• Fault containment to prevent propagation of the failure
• Availability of reversion modes

• Many kind of faults
• Power
• Network
• Server
• Disk
• Virus or Attack

• Requires replication and redundancy

Failover / transparent failover
• What to do when a problem occurs
• How to make it transparent for the user
• Failover

• Start a secondary system
• Increase availability

Middleware
• Software between the operating system and the

application

Le middleware
• Help to make distribution transparent

• Transparency of heterogeneity
• Transparency of location
• Transparency of invocation
• Transparency of transaction management
• Transparency of security management
• Transparency of service replication

Distributed Object
• A distributed object is made available to a distant client

• Executing in another process,
• From another place of the network

Distributed Object

Developing a distributed object
• Take into account the execution context

• Explicit middleware
• The developer is in charge

• The environment manage the execution context
• Implicit middleware
• The container is in charge

Software Code/Middleware code
• Software Code, related to the business

• Management of a bank account

• Middleware code, not directly related to the business
• Security management
• Audit
• Persistence management

• Goal : separate the application code from the middleware
code

Middleware code
• Access as services

• Persistence
• Logging, audit
• Transation

• Defined by API and policies
• Start/commit transaction, store/load data...

• Question : how to manage both the middleware code and
the application code

Explicit Middleware

Implicit Middleware

CORBA and object brokers
• Common Object Request Broker Architecture

• www.corba.org

• Distributed Object Model
• Standardized by the OMG since 1990
• Objectives

• Transparency of distribution
• Interoperability

http://www.corba.org/

Object Request Broker
• Software bus to route request
• Services

• Locate objects on the network
• Call operation on the network

• Internet InterORB Protocol

client

server

proxy

or dynamic invocation

implementation
 repository object

adapter

ORBORB

skeleton

or dynamic skeleton

client
 program

interface
 repository

Request

Reply
corecore for A

Servant
 A

The Broker Architecture

Corba services (1)

Corba Services (2)

CORBA and interoperability
• Agnostic language to define interface

• IDL = Interface Définition Language

• IDL Translation from and to C++, Java, Python,C,…
• Allows to call a Java service from a C++ applications

• No interoperability between ORB from different vendors

Problems with Distributed Objects
• Implicit dependencies
• Interaction with the middleware
• Lack of separation of distribution concern
• No support for deployment

Component
• A component complies to a contract to execute itself in a

container
• Includes

• A set of provided interfaces
• A set of required interfaces

Definitions
• Council et Heinmann

• A software component is a software element that conforms to a
component model and can be independently deployed and
composed without modification according to a composition
standard

• Szyperski
• A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject
to composition by third-parties.

Container
• Provide an execution environment for component
• Manage the component life cycle
• Manage the relation with other services

Component Charateristic (Sommerville)

• Standardised
• Independant
• Composable
• Deployable
• Documented

Components as service provider
• Component are independant executable entities
• All interactions with a component take place through an

interface
• The state of a component is never exposed

Interfaces
• Provides interfaces

• Define the services provided by the component
• API of the component
• Used by the component client

• Required interfaces
• Services needed by the component for its execution
• No reference to how the service have to be provided

Interfaces
• UML notation

Example (from SE9)

Component models
• Definition of standards for the development, deploiement

and documentation of components
• Examples

• EJB
• COM (.Net)
• Corba Component Model
• SCA

Basic elements

Component vs Objects
• Component can be deployed
• Component do not define type
• Component implementation is hidden
• Components are language neutral
• Components are standardized

Middleware support
• Component models are the basis for middleware that

provides support for executing components.
• Component model implementations provide:

• Platform services that allow components written according to the
model to communicate;

• Horizontal services that are application-independent services used
by different components.

• To use services provided by a model, components are
deployed in a container. This is a set of interfaces used to
access the service implementations.

Middleware services in a component model

34

CBSE processes
• CBSE processes are software processes that support

component-based software engineering.
• They take into account the possibilities of reuse and the different

process activities involved in developing and using reusable
components.

• Development for reuse
• This process is concerned with developing components or services

that will be reused in other applications. It usually involves
generalizing existing components.

• Development with reuse
• This process is the process of developing new applications using

existing components and services.

35

The Process

36Chapter 17 Software reuse

Supporting processes
• Component acquisition is the process of acquiring

components for reuse or development into a reusable
component.
• It may involve accessing locally- developed components or

services or finding these components from an external source.

• Component management is concerned with managing a
company’s reusable components, ensuring that they are
properly catalogued, stored and made available for reuse.

• Component certification is the process of checking a
component and certifying that it meets its specification.

Chapter 17 Software reuse 37

So why components
• Reuse
• NIH (Not Invented Here)
• High Cohesion/Low Coupling
• Explicit dependencies
• …

Key points
• CBSE is a reuse-based approach to defining and

implementing loosely coupled components into systems.
• A component is a software unit whose functionality and

dependencies are completely defined by its interfaces.
• A component model defines a set of standards that

component providers and composers should follow.
• The key CBSE processes are CBSE for reuse and CBSE

with reuse.

39Chapter 17 Software reuse

Java EE
• Application Server
• Define a stantard architecture including

• A programming model (multi-tier, lightweight client)
• A platform (ensemble de spécifications et de politiques requises)
• A set of compatibility tests
• A reference implementation
• Patterns

Java EE 7 (2013)

New Stuff
• WebSOckets
• Batch applications
• JSON
• Concurrency
• New JMS API
• Transaction
• Default Resources
• More annotations
• Faces Flow (JSF)

Application components
• 4 kinds of components

• Client Component (Swing application)
• Interface Component (Applet)
• Web Component (Servlet, JSP, JSF)
• EJB Component

• Component services
• Management,
• Deployment,
• Execution

Containers
• Containers supports the executions of Java EE

Components
• 4 Containers Types

• ?

Containers types

From jee7 tutorial - https://docs.oracle.com/javaee/7/tutorial/overview004.htm /

http://download.oracle.com/javaee/6/tutorial/doc/

Java EE Services

JNDI (part of Java SE)
• Java naming and directory interface
• Naming Services

JDBC (Java SE)
• Java Database Connectivity

• Relational Database Service

JTA
• Java Transaction Service
• Distributed Transaction Service

JMS
• Java Messaging Service
• Messaging Middleware

Java Mail
• Email Management Service

JASPIC and JACC
• JavaTM Authentication Service Provider Interface for

Containers
• Java Authorization Service Provider Contract for

Containers
• Complement JAAS (from Java SE)

JPA
• Persistence Service

The future of Java EE
• CF Java One 2016

	Slide 1
	Objectives
	Engineering problem
	Fault tolerant systems
	Failover / transparent failover
	Middleware
	Le middleware
	Distributed Object
	Distributed Object
	Developing a distributed object
	Software Code/Middleware code
	Middleware code
	Explicit Middleware
	Implicit Middleware
	CORBA and object brokers
	Object Request Broker
	The Broker Architecture
	Corba services (1)
	Corba Services (2)
	CORBA and interoperability
	Problems with Distributed Objects
	Component
	Definitions
	Container
	Component Charateristic (Sommerville)
	Components as service provider
	Interfaces
	Interfaces
	Example (from SE9)
	Component models
	Basic elements
	Component vs Objects
	Middleware support
	Middleware services in a component model
	CBSE processes
	The Process
	Supporting processes
	So why components
	Key points
	Java EE
	Java EE 7 (2013)
	New Stuff
	Application components
	Containers
	Containers types
	Java EE Services
	JNDI (part of Java SE)
	JDBC (Java SE)
	JTA
	JMS
	Java Mail
	JASPIC and JACC
	JPA
	The future of Java EE

