
DISTRIBUTED OBJECT 
AND COMPONENTS



Objectives
• Understand the development of distributed system
• Present middleware solutions for

• Distributed object
• Component based application

• Applications in a Java EE environment



Engineering problem
• How to build enterprise applications

• Safe
• Secure
• Scalable
• Available
• Extensible
• Cost effective



Fault tolerant systems
• The basic characteristics of fault tolerance require:

• No single point of failure
• Fault isolation to the failing component
• Fault containment to prevent propagation of the failure
• Availability of reversion modes

• Many kind of faults
• Power
• Network
• Server
• Disk
• Virus or Attack

• Requires replication and redundancy



Failover / transparent failover
• What to do when a problem occurs
• How to make it transparent for the user
• Failover

• Start a secondary system
• Increase availability



Middleware
• Software between the operating system and the 

application



Le middleware
• Help to make distribution transparent

• Transparency of heterogeneity
• Transparency of location
• Transparency of invocation
• Transparency of transaction management
• Transparency of security management
• Transparency of service replication



Distributed Object
• A distributed object is made available to a distant client

• Executing in another process, 
• From another place of the network



Distributed Object



Developing a distributed object
• Take into account the execution context

• Explicit middleware
• The developer is in charge

• The environment manage the execution context
• Implicit middleware
• The container is in charge



Software Code/Middleware code
• Software Code, related to the business

• Management of a bank account

• Middleware code, not directly related to the business
• Security management
• Audit
• Persistence management

• Goal : separate the application code from the middleware 
code



Middleware code
• Access as services

• Persistence
• Logging, audit
• Transation

• Defined by API and policies
• Start/commit transaction, store/load data...

• Question : how to manage both the middleware code and 
the application code



Explicit Middleware



Implicit Middleware



CORBA and object brokers
• Common Object Request Broker Architecture

• www.corba.org

• Distributed Object Model
• Standardized by the OMG since 1990
• Objectives

• Transparency of distribution
• Interoperability

http://www.corba.org/


Object Request Broker
• Software bus to route request
• Services

• Locate objects on the network
• Call operation on the network

• Internet InterORB Protocol
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The Broker Architecture



Corba services (1)



Corba Services (2)



CORBA and interoperability
• Agnostic language to define interface

• IDL = Interface Définition Language

• IDL Translation from and to C++, Java, Python,C,…
• Allows to call a Java service from a C++ applications

• No interoperability between ORB from different vendors



Problems with Distributed Objects
• Implicit dependencies
• Interaction with the middleware
• Lack of separation of distribution concern
• No support for deployment



Component
• A component complies to a contract to execute itself in a 

container
• Includes

• A set of provided interfaces
• A set of required interfaces



Definitions
• Council et Heinmann

• A software component is a software element that conforms to a 
component model and can be independently deployed and 
composed without modification according to a composition 
standard

• Szyperski
• A software component is a unit of composition with contractually 

specified interfaces and explicit context dependencies only. A 
software component can be deployed independently and is subject 
to composition by third-parties.



Container
• Provide an execution environment for component
• Manage the component life cycle
• Manage the relation with other services



Component Charateristic (Sommerville)

• Standardised
• Independant
• Composable
• Deployable
• Documented



Components as service provider
• Component are independant executable entities
• All interactions with a component take place through an 

interface
• The state of a component is never exposed



Interfaces
• Provides interfaces

• Define the services provided by the component
• API of the component
• Used by the component client

• Required interfaces
• Services needed by the component for its execution
• No reference to how the service have to be provided



Interfaces
• UML notation



Example (from SE9)



Component models
• Definition of standards for the development, deploiement 

and documentation of components
• Examples

• EJB
• COM (.Net)
• Corba Component Model
• SCA



Basic elements



Component vs Objects
• Component can be deployed
• Component do not define type
• Component implementation is hidden
• Components are language neutral
• Components are standardized



Middleware support
• Component models are the basis for middleware that 

provides support for executing components.
• Component model implementations provide:

• Platform services that allow components written according to the 
model to communicate;

• Horizontal services that are application-independent services used 
by different components.

• To use services provided by a model, components are 
deployed in a container. This is a set of interfaces used to 
access the service implementations.



Middleware services in a component model

34



CBSE processes
• CBSE processes are software processes that support 

component-based software engineering. 
• They take into account the possibilities of reuse and the different 

process activities involved in developing and using reusable 
components. 

• Development for reuse 
• This process is concerned with developing components or services 

that will be reused in other applications. It usually involves 
generalizing existing components.

• Development with reuse 
• This process is the process of developing new applications using 

existing components and services.

35



The Process

36Chapter 17 Software reuse



Supporting processes
• Component acquisition is the process of acquiring 

components for reuse or development into a reusable 
component. 
• It may involve accessing locally- developed components or 

services or finding these components from an external source.

• Component management is concerned with managing a 
company’s reusable components, ensuring that they are 
properly catalogued, stored and made available for reuse.

• Component certification is the process of checking a 
component and certifying that it meets its specification.

Chapter 17 Software reuse 37



So why components
• Reuse
• NIH (Not Invented Here)
• High Cohesion/Low Coupling
• Explicit dependencies
• …



Key points
• CBSE is a reuse-based approach to defining and 

implementing loosely coupled components into systems.
• A component is a software unit whose functionality and 

dependencies are completely defined by its interfaces.
• A component model defines a set of standards that 

component providers and composers should follow.
• The key CBSE processes are CBSE for reuse and CBSE 

with reuse.

39Chapter 17 Software reuse



Java EE
• Application Server
• Define a stantard architecture including

• A programming model (multi-tier, lightweight client)
• A platform (ensemble de spécifications et de politiques requises)
• A set of compatibility tests
• A reference implementation
• Patterns



Java EE 7 (2013)



New Stuff
• WebSOckets
• Batch applications
• JSON
• Concurrency
• New JMS API
• Transaction
• Default Resources
• More annotations
• Faces Flow (JSF)



Application components
• 4 kinds of components

• Client Component (Swing application)
• Interface Component (Applet)
• Web Component (Servlet, JSP, JSF)
• EJB Component

• Component services
• Management, 
• Deployment, 
• Execution



Containers
• Containers supports the executions of Java EE 

Components
• 4 Containers Types

• ?



Containers types

From jee7 tutorial - https://docs.oracle.com/javaee/7/tutorial/overview004.htm /

http://download.oracle.com/javaee/6/tutorial/doc/


Java EE Services



JNDI (part of Java SE)
• Java naming and directory interface
• Naming Services



JDBC (Java SE)
• Java Database Connectivity

• Relational Database Service



JTA
• Java Transaction Service
• Distributed Transaction Service



JMS
• Java Messaging Service
• Messaging Middleware

                       



Java Mail
• Email Management Service



JASPIC and JACC
• JavaTM Authentication Service Provider Interface for 

Containers
• Java Authorization Service Provider Contract for 

Containers
• Complement JAAS (from Java SE)

  

                   

         



JPA
• Persistence Service



The future of Java EE
• CF Java One 2016 
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