
DISTRIBUTED SYSTEMS
SERVICE ORIENTED
COMPUTING

Goals
• Understand the Foundations

• Characterization
• Programming models
• Remote Invokation

• Get knowledge on Middleware
• Distributed Objects
• Web Services

• Advanced concepts
• Transations
• Security

Content
• Foundations
• Platforms
• Distributed Object & Components
• Service Computing
• Cloud

Bibliography
• Slides of Martin Quinson (ESIAL 2008)
• Courses on the Internet

• Systèmes et Applications Répartis (S. Krakowiak)
• http://sardes.inrialpes.fr/~krakowia/Enseignement/M2P-GI/
• Ecole d’été sur les intergiciels
• http://sardes.inrialpes.fr/ecole/2003/support.html

• Distributed Systems 5th Edition
• George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair
• http://www.cdk5.net/wp/

• Software Engineering 9
• Ian Sommerville

http://sardes.inrialpes.fr/~krakowia/Enseignement/M2P-GI/
http://sardes.inrialpes.fr/ecole/2003/support.html
http://www.cdk5.net/wp/
http://www.cdk5.net/wp/

Distributed Systems
• Components communicate and coordinate their actions

only by message passing.
• Computer connected by a Network

• Concurrency
• No Global Clock
• Independant Failure

Examples
• E-Commerce et trading
• Banking
• Call Centers
• Entertainment
• Science
• …

• Lot of heterogeneous informations sources
• Heterogeneous Systems
• High throughtput
• Rapide evolution

Evolution of scales
• Centralised computing
• Distributed applications on a local network (LAN)
• Distributed applications on a wide area network - Internet

is the computer (Service, P2P)
• Elastic / Utility Computing (Cloud, Grid)
• Mobile/Ubiquitous computing

Distributed System
• Definition

• A distributed system consists of multiple autonomous computers
that communicate through a computer network. The computers
interact with each other in order to achieve a common goal.
(Wikipedia http://en.wikipedia.org/wiki/Distributed_system)

http://en.wikipedia.org/wiki/Distributed_system
http://en.wikipedia.org/wiki/Distributed_system

Trends in distributed systems
• Pervasive Networking
• Mobile and ubiquitous computing

• Small portable devices
• Wearable
• Embedded
• Computer everywhere

• Distributed Multimedia Systems
• Webcasting, streaming
• Quality of service

• Distributed computing as a utility (commoditisation)
• Services
• Cloud computing

Challenges
• Heterogeneity
• Openness

• Key interfaces are published
• Security
• Scalability
• Failure Handling
• Concurrency
• Transparency
• Quality of service

Scalability
• Controling the cost of physical resources (O(n))
• Controling the performance lost (O(log n))
• Preventing software resources running out
• Avoiding performance bottleneck

Failure Handling
• Detecting failures
• Masking failures
• Tolerating failures
• Recovery from failure
• Redundancy

• Availability : from 99 to 99.99999

Transparency
• Access transparency : local vs remote
• Location transparency
• Concurrency transparency
• Replication transparency
• Failure transparency
• Mobility transparency
• Perdormance transparency
• Scaling transparency

System Models
• Physical Models
• Architectural Models
• Fundamentals Models

Physical Models

Architectural Models
• Communicating Elements and Paradigms

Placement
• Mapping of service to multiple servers
• Caching
• Mobile code
• Mobile Agent

Client

Proxy

Web

server

Web

server

server
Client

Tiered Architectures – One Tier

Two Tiers
• Problems of maintenance and deploiement
• Consistency

Three tiers

Multi-tiers

Other patterns
• Thin Client
• Layered
• Proxy
• Broker
• Reflection

Middleware Solutions

Remote Invocation
• How process communicate in a distributed system
• Request-reply protocols
• What are the problems and the solutions ?

Request Reply Protocols

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)
 sends a request message to the remote server and returns the reply.
 The arguments specify the remote server, the operation to be invoked and the
 arguments of that operation.
public byte[] getRequest ();

 acquires a client request via the server port.
public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
 sends the reply message reply to the client at its Internet address and port.

Call Semantics

Fault tolerance measures Call
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Transparency
• Goal : remote calls as similar as local calls as possible
• Location and access transparency
• New kind of failures (network)
• Latency
• Parameter passing

• Difference between local and remote call should be
expressed in the interface

RPC
• History

• Invented in1976 (RFC 707)
• Implemented by SUN in 1988
• Used in NFS

• Design issues
• Programming with interfaces
• Call semantics
• Transparency

Three key issues
• Programming with interfaces

• Hide the implementation details
• Hide programming language
• Easier evolution

• Call Semantics
• Sun RPC provides « at-least-once » semantics

• Transparency
• Location and access transparency
• No call by reference

Splitting the application
• Procedure as the unit of abstraction
• RPC – remote procedure call

SUN RPC (1988)
• Generation of code common to all calls

client

Request

Reply

CommunicationCommunication
 module module dispatcher

service

client stub

server stub
procedure procedure

client process server process

procedureprogram

SUN RPC
• The Client Stub

• Receive the local call
• Wrap the parameters (marshalling)
• Generate an identifier
• Send the client call
• Waits for the result
• Receive and unwrap the result (unmarshalling)
• Send the result to the caller (return)

• The Server Skeleton
• Receive the call
• Unwrap the parameters
• Execute the local call
• Wrap and return the result

Naming and binding
• Naming : name given by an entity to another
• Binding : setting in relation entities

• Naming: what procedure is called on which computer
• Naming should not depend on localisation

• Late or early binding
• Early : known at compile time
• Late : selected at execution time

Registry : from name to address
• 1: Binding
• 2: Lookup

• Criteria
• Name (service, computer, node)
• Properties

Client

Stub

Server

SkeletonRegistry
2 1

Data representation
• Computers heterogeneity
• Difference of internal data representation

• Little-endian (x86) vs Big-endian (ppc, sparc)
• Floating points(IEEE 754)
• Data alignment
• Size

Data representation on the network
• eXternal Data Representation (XDR, SUN RPC)
• Other solutions

• htonl, ntohl, etc : manual conversions
• ASN.1
• XML : SOAP, JXTA.
• IIOP : CORBA
• NDR : Network Data Representation

Parameter passing
• By value: foo(43)

• No problem
• By reference : foo(&x)

• Impossible – not the same address space
• By copy/restore

• Potential problem

Aliasing Problems

By reference By copy/restore
copy

restore

What is
happening ?

Failures
Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission Process A process completes a send, but the message is not put

in its outgoing message buffer.
Receive-omission Process A message is put in a process’s incoming message

buffer, but that process does not receive it.
Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

RPC Call semantics
• Maybe semantics

• Not certain that the procedure has been executed
• At least once semantics

• Retransmission of the request message
• The procedure can be executed more than once

• At most once semantics

Distributed Objects
• RPC but with objects
• The remote object can be called as a local object

RPC vs RMI (Remote Method Invocation)
• Commonalities

• Programming with interfaces
• Request reply protocol
• Similar level of transparency

• Differences
• RMI : object oriented programming
• Object have an identity and can be passed as parameters

Java RMI
• Object model

• Object references
• Interfaces
• Actions
• Exceptions
• Garbage Collection

• Distributed object
model
• Remote object
• Remote object reference
• Remote interfaces
• Actions
• Exceptions
• Distributed Garbage

Collection

Implementation of RMI

Implementing a distributed object
• Big picture

• Define the interface
• Implement it (servant)
• Implement the server (instantiate the servant and bind it)
• Implement the client

• The interface contract
• Must be public
• Must extends java.rmi.Remote
• Each method must throw java.rmi.RemoteException

Programming principles
• Servant

• Must implement the remote interface (Remote)
• May implement local methods

• Server
• Instantiate and install a security manager
• Instantiate the servant class
• Bind the instant in the name registry

• Registry
• Maintain a reference between the name and the reference
• Implement java.rmi.registry.Registry
• Provide the bind and lookup service

Example
• HelloInterface.java

Example
• HelloImpl.java

Example
• Serveur.java

Example
• Client.java

Compilation and deploiement
• Compile all the classes

• javac *
• Server

• HelloInterface, HelloImpl, Serveur
• Client

• Client, HelloInterface
• Create jar for deploiement

Execution
• rmiregistry &

• Default port : 1099
• -J-Dsun.rmi.loader.logLevel=BRIEF to see what is going on

• Start the server
• java -Djava.security.policy=java.policy HelloServer &

• Start the client
• java HelloClient &

Security
• Allowing distant connection is dangerous
• Executing downloaded code is dangerous
• Security policies describe authorisations

• No policy implies that external connection are refused
• java.policy files

RMI execution in Java

Downloading classes
• Stubs and class can be stored on a web site
• Automatic download on clients
• Download occurs when

• The client receive a stub not in his CLASSPATH
• The server receive an object reference for an unknown class

• Class localisation using a codebase specification

RMI and Code downloading

Polymorphism and RMI
• Polymorphism

• As usual by subtyping
• The subtype code is downloaded
• Allows code evolution

• Parameter passing
• The server provides m(C p)
• The client request server.m(x) . Classe(x)<C

• Result
• The client calls C r=server.m(…)
• The server return a result of class C2<C

Object Factory and reference passing
• A client want a new reference from a server object
• It requires it from a factory object

• Example : a session object for each client

Asynchronous calls and concurrency
• Several clients ask for services

• What is the behaviour of the server ?
• Use of thread in the server

• Concurrent calls
• Concurrent access to ressources
• Explicit management of concurrency

Callbacks
• The server informs the clients of events
• Solution

• The client implements a remote object that can be called by the
server

• The server provides an interface to register the client remote
reference (the callback object)

• When a relevant event occurs, the server calls a method on the
client.

• The server maintains a list of client objects.
• The server needs to make series of synchronous calls

Distributed Garbage Collection
• If there is a reference to an object (remote or local) the

object continue to exist
• Uses reference counting
• When a client C receive a remote ref, it notify the server process

and creates a proxy.
• When the ref is garbaged on C the ref is removed on the server
• Lease expiration is used to cope with client failure

Design Patterns and Distributed Systems
• General principle : Separation of concern

• Manage separately orthogonal dimensions
• Reduce interferences
• Allow independant evolutions

• Obtained with
• Encapsulation
• Abstraction
• Components
• Aspect Oriented Programming

Proxy
• Access to a distant object
• Isolate the client from the server
• The proxy object manage the communication

Proxy (from the GOF Book)

The Factory
• Separate the choice of an implementation from its use

• Provide methods to create concrete objects
• The client only knows interfaces*

• Replace by dependency injection

Wrapper ou adapter
• A client requires a different interface than the servant

C. A. R. Hoare
I conclude that there are two ways of constructing a
software design: One way is to make it so simple that there
are obviously no deficiencies and the other way is to make
it so complicated that there are no obvious deficiencies.

	Slide 1
	Goals
	Content
	Bibliography
	Distributed Systems
	Examples
	Evolution of scales
	Distributed System
	Trends in distributed systems
	Challenges
	Scalability
	Failure Handling
	Transparency
	System Models
	Physical Models
	Architectural Models
	Placement
	Tiered Architectures – One Tier
	Two Tiers
	Three tiers
	Multi-tiers
	Other patterns
	Middleware Solutions
	Remote Invocation
	Request Reply Protocols
	Call Semantics
	Transparency
	RPC
	Three key issues
	Splitting the application
	SUN RPC (1988)
	SUN RPC
	Naming and binding
	Registry : from name to address
	Data representation
	Data representation on the network
	Parameter passing
	Aliasing Problems
	Failures
	RPC Call semantics
	Distributed Objects
	RPC vs RMI (Remote Method Invocation)
	Java RMI
	Implementation of RMI
	Implementing a distributed object
	Programming principles
	Example
	Example
	Example
	Example
	Compilation and deploiement
	Execution
	Security
	RMI execution in Java
	Downloading classes
	RMI and Code downloading
	Polymorphism and RMI
	Object Factory and reference passing
	Asynchronous calls and concurrency
	Callbacks
	Distributed Garbage Collection
	Design Patterns and Distributed Systems
	Proxy
	Proxy (from the GOF Book)
	The Factory
	Wrapper ou adapter
	C. A. R. Hoare

