DISTRIBUTED SYSTEMS
SERVICE ORIENTED
COMPUTING

Goals

* Understand the Foundations
* Characterization
* Programming models
* Remote Invokation

* Get knowledge on Middleware
* Distributed Objects
* Web Services

* Advanced concepts
* Transations
* Security

Content

* Foundations

* Platforms

* Distributed Object & Components
* Service Computing

* Cloud

Bibliography

* Slides of Martin Quinson (ESIAL 2008)

* Courses on the Internet
© Systemes et Applications Répartis (S. Krakowiak)
* http://sardes.inrialpes.fr/~krakowia/Enseignement/M2P-Gl/
* Ecole d’été sur les intergiciels
* http://sardes.inrialpes.fr/ecole/2003/support.html

* Distributed Systems 5th Edition
* George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair
‘ httD//WWWCdksnet/WD/ | DISTRIBUTED SYSTEMS

* Software Engineering 9
* lan Sommerville

http://sardes.inrialpes.fr/~krakowia/Enseignement/M2P-GI/
http://sardes.inrialpes.fr/ecole/2003/support.html
http://www.cdk5.net/wp/
http://www.cdk5.net/wp/

Distributed Systems

* Components communicate and coordinate their actions
only by message passing.
* Computer connected by a Network

* Concurrency
* No Global Clock
* Independant Failure

Examples

* E-Commerce et trading
* Banking

* Call Centers

* Entertainment

* Science

* Lot of heterogeneous informations sources
* Heterogeneous Systems

* High throughtput

* Rapide evolution

Evolution of scales

* Centralised computing
* Distributed applications on a local network (LAN)

* Distributed applications on a wide area network - Internet
is the computer (Service, P2P)

* Elastic / Utility Computing (Cloud, Grid)
* Mobile/Ubiquitous computing

Distributed System

* Definition
* A distributed system consists of multiple autonomous computers
that communicate through a computer network. The computers

interact with each other in order to achieve a common goal.
(Wikipedia http://en.wikipedia.org/wiki/Distributed system)

http://en.wikipedia.org/wiki/Distributed_system
http://en.wikipedia.org/wiki/Distributed_system

Trends in distributed systems

* Pervasive Networking

* Mobile and ubiquitous computing
* Small portable devices
* Wearable
* Embedded
* Computer everywhere

* Distributed Multimedia Systems
* Webcasting, streaming
* Quality of service

* Distributed computing as a utility (commaoditisation)
* Services
* Cloud computing

Challenges

* Heterogeneity

* Openness
* Key interfaces are published

* Security

* Scalability

* Failure Handling
* Concurrency

* Transparency

* Quality of service

Scalability

* Controling the cost of physical resources (O(n))
* Controling the performance lost (O(log n))

* Preventing software resources running out

* Avoiding performance bottleneck

Internet hosts 1981-2012

https:iwww.isc.org/solutions/survey/history

1,000,000,000
100,000,000 fﬂ
10,000,000 _f""’
E 1,000,000
2
£ f
£ 100,000
g /J'
10,000 //
000 .-//—
1 1!

Failure Handling

* Detecting failures

* Masking failures

* Tolerating failures

* Recovery from failure
* Redundancy

* Availability : from 99 to 99.99999

Transparency

* Access transparency : local vs remote
* Location transparency

* Goncurrency transparency

* Replication transparency

* Failure transparency

* Mobility transparency

* Perdormance transparency

* Scaling transparency

System Models

* Physical Models
* Architectural Models
* Fundamentals Models

Physical Models

Distributed systems.:
Scale

Heterogeneity

Openness

Quality of service

Early
Small

Limited (typically
relatively homogenous
configurations)

Not a priority

In its infancy

Internet-scale

Large

Significant in terms of
platforms, languages
and middleware

Significant priority
withrange of standards
introduced

Significant priority
with range of services
introduced

Contemporary
Ultra-large

Added dimensions
introduced including
radically different styles of
architecture

Major research challenge
with existing standards not
yet able to embrace
complex systems

Major research challenge
with existing services not
yet able to embrace
complex systems

Architectural Models

* Communicating Elements and Paradigms

Communication paradigms
(how they communicate)

Communicating entities
(what is communicating)

System-oriented Problem- Interprocess Remote Indirect
entities oriented entities communication invocation communication
Nodes Objects Message Request- Group
Components passing reply communication
Sockets RPC Publish-subscribe

Web services
Multicast RMI Message queues

Tuple spaces

DSM

Placement

* Mapping of service to multiple servers
* Gaching

* Mobile code

* Mobile Agent

Web
/ server
Proxy
server
/ \

server

Tiered Architectures — One Tier

Applications sur site central

Mainframe
Présentation
/ Traitement

Données

Terminaux X
I

Micro-ordinateurs

Présentation

Traitement

‘ - - ‘ = | Données

Réseau local é INFS
—

Données
Serveur de fichiers

Two Tiers

* Problems of maintenance and deploiement
* Consistency

Micro-ordinateurs

Présentation
Traitement
= = =

| | SQLiRPC

Résean local
Traitement
Données

SGBD

Three tiers

Navigateur web

Serveur web SGRBD

Code applicatif

) e
CGI

Présentation

SQL |

RPC (&8

Traitement

Traitement

Données

Multi-tiers

Terminaux] Serveurs de | Serveurs | Serveurs de
variés | présentation | applicatifs | données

'\ Interfaces multiples
| Equilibrage de charge |

Other patterns

* Thin Client
* Layered

* Proxy

* Broker

* Reflection

Middleware Solutions

Major categories:
Distributed objects (Chapters 5, 8)

Distributed components (Chapter 8)

Publish-subscribe systems (Chapter 6)

Message queues (Chapter 6)

Web services (Chapter 9)

Peer-to-peer (Chapter 10)

Subcategory

Standard

Platform

Platform

Lightweight components
Lightweight components
Application servers
Application servers

Application servers

Web services

Grid services
Routing overlays
Routing overlays
Application-specific
Application-specific
Application-specific
Application-specific

Example systems
RM-ODP

CORBA

Java RMI

Fractal

OpenCOM
SUNEJB

CORBA Component Model
JBoss

CORBA Event Service
Scribe

IMS

Websphere MQ
IMS

Apache Axis

The Globus Toolkit
Pastry

Tapestry

Squirrel
OceanStore

Ivy

Gnutella

Remote Invocation

* How process communicate in a distributed system
* Request-reply protocols
* What are the problems and the solutions ?

Client Server

doOperation Request
. message > getRequest
4 select object
(wait) execute
Reply method
message sendReply

(continuation)

Request Reply Protocols

public byte[] doOperation (RemoteRef s, int operationld, byte[| arguments)
sends a request message to the remote server and returns the reply.
The arguments specify the remote server, the operation to be invoked and the
arguments of that operation.

public byte[| getRequest ();
acquires a client request via the server port.
public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);

sends the reply message reply to the client at its Internet address and port.

Call Semantics

Fault tolerance measures Call :
semantics
Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply
No Not applicable Not applicable Maybe
Yes No Re-execute procedure At-least-once

Yes Yes Retransmit reply At-most-once

Transparency

* Goal : remote calls as similar as local calls as possible
* Location and access transparency

* New kind of failures (network)

* Latency

* Parameter passing

* Difference between local and remote call should be
expressed in the interface

RPC

* History
* Invented in1976 (RFC 707)
* Implemented by SUN in 1988
* Used in NFS

* Design issues
* Programming with interfaces

* Call semantics
* Transparency

Three key issues

* Programming with interfaces

* Hide the implementation details

* Hide programming language

* Easier evolution
* Call Semantics

* Sun RPC provides « at-least-once » semantics
* Transparency

* Location and access transparency
* No call by reference

Splitting the application

* Procedure as the unit of abstraction

* RPC — remote procedure call
Site A Site B

F{x,}'?l

Processus

Processus

|

Appel local RPC

SUN RPC (1988)

* Generation of code common to all calls

client process server process
Reques [] O
Repl
client stub Py server stub
rocedur procedure

client o - service
program Communication Communication procedure

module module dispatcher

SUN RPC

* The Client Stub

* Receive the local call
* Wrap the parameters (marshalling)
* Generate an identifier
* Send the client call
* Walits for the result
* Receive and unwrap the result (unmarshalling)
* Send the result to the caller (return)

* The Server Skeleton
* Receive the call
* Unwrap the parameters
* Execute the local call
* Wrap and return the result

Naming and binding

* Naming : name given by an entity to another
* Binding : setting in relation entities

* Naming: what procedure is called on which computer
* Naming should not depend on localisation

* Late or early binding
* Early : known at compile time
* Late : selected at execution time

Registry : from name to address

* 1: Binding
* 2: Lookup

Client Server

Registry

Skeleton

* Criteria
* Name (service, computer, node)
* Properties

Data representation

* Computers heterogeneity

* Difference of internal data representation
* Little-endian (x86) vs Big-endian (ppc, sparc)
* Floating points(IEEE 754)
* Data alignment
°© Size

0153 65 90— 906553 0

type char || short | int | long | long long * float | double
sizeof 1 2 4 | 4/8 8 4/8 4 8

Data representation on the network

* eXternal Data Representation (XDR, SUN RPC)

* Other solutions
* htonl, ntohl, etc : manual conversions
* ASN.1
* XML : SOAP, JXTA.
* [IOP : CORBA
* NDR : Network Data Representation

Parameter passing

* By value: foo(43)
* No problem

* By reference : foo(&x)
* Impossible — not the same address space

* By copy/restore
* Potential problem

Avant | VO Copie = VO
)Traitamﬂnt

|-l
Apres | V1 Restauration Vi

Site local Site distant

Aliasing Problems

=10
inc2(s,s)

procedure inc2(x,y)
x += 1

]r-l-Il

What is
happening ?

il-® |+=1 il copy III\\

EEl‘;“l +=1 5%4 To |+=1
ﬂ >|+=1
Lokl -1/

] - restore —

Faillures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completesa send, but the message is not put

in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary Process or Process/channel exhibits arbitrary behaviour: it may

(Byzantine) channel send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

RPC Call semantics

* Maybe semantics
* Not certain that the procedure has been executed

* At least once semantics
* Retransmission of the request message
* The procedure can be executed more than once

* At most once semantics

Distributed Objects

* RPC but with objects
* The remote object can be called as a local object

Distributed
object

[= Remate Interface

RPC vs RMI (Remote Method Invocation)

* Commonalities
* Programming with interfaces
* Request reply protocol
* Similar level of transparency

* Differences
* RMI : object oriented programming
* Object have an identity and can be passed as parameters

Java RMI

* Object model * Distributed object
* Object references model
* Interfaces * Remote object
* Actions * Remote object reference
" Exceptions * Remote interfaces
* Garbage Collection * Actions

* Exceptions

* Distributed Garbage
Collection

Implementation of RMI

server
remote

skeleton object B
& dispatcher

for B’s class

object A proxy for B Request

g & |

Reply

L L servant
Remote Communication Communication Remote reference

reference module module module module

Implementing a distributed object

* Big picture
* Define the interface
* Implement it (servant)
* Implement the server (instantiate the servant and bind it)
* Implement the client
* The interface contract
* Must be public

* Must extends java.rmi.Remote
* Each method must throw java.rmi.RemoteException

Programming principles

* Servant
* Must implement the remote interface (Remote)
* May implement local methods

* Server
* Instantiate and install a security manager
* Instantiate the servant class
* Bind the instant in the name registry
* Reqistry
* Maintain a reference between the name and the reference
* Implement java.rmi.registry.Registry
* Provide the bind and lookup service

Example

* Hellolnterface.java

package CcoOurs.Serveur;

import Jjava.rmi.Remote;
import Java.rmi.BRemoteExXception;

public interface HellolInterface extend=s Remote |
public 2tring savHello(()l throws EemoteException:

Example

o LAAllAIlmAIl 1AviAa
pankage COurs.servelr;?

import Java.rmli.RemoteException;

public class HellolIwmpl implements HellolInterface |
private String messadge;

public HelloImpli(3tring =) |

Inessage=35-r

public 3tring savHello(3tring =) throws EemoteException
return meszage+" "+3:;

Example

° Se package coursS.ServVeur;
‘import Jjava.rmi.registrvy.LocateRegistry:
import Jjava.rmi.registry.BRegistry:
import Jjava.rmwi.server.UnicastRemotedbhiject;

public class Serwveur 1

public static void main(3tring[] args) |

if [(System. getSecuritvyManager () == null)] {

Svatem. setSecuritvManager (new SecuritvyManager ()] ;
b
try |

IJtring name = "Hello™;

HelloInterface hello = new HelloImpl("hello'™):

HelloInterface stubh =
(HelloInterface] UnicastRemotelbhiect.exportlbjijectihello, 0]

Fegistry registry = LocateRegistry.getRegistrvi) ;
registry.rebind (name, stub) !
SJystem. ort.println("Hello bhound™) ;

' catch (Exception e)
Jystem.err.println("Hello exception: ™) ;
e.print3tackTrace (] ;

Example

‘ Cl Ieriltm'k?t}éncnurs .client:

import java.rmwi.registry.LocateRegistry:
import java.rwi.registrvy.BRegistry:

import cours.serveur.HelloInterface:

public class Client {
public static void main(3tring[] args) |

if (3ystem. getSecuritvManager(] == nmmll) |

System. setSecuritviMandger inew SecurityManager (1) :
¥
try |

String nhame="Hello':
Fegistry registry=LocateRegistry. getRegistrv]}
HellolInterface hello=(HelloInterface] registry. lookup (name) ;

Aystem. out.printlnihello.sayHello ("les amis™)) ;
v+ catchi(Exception)
aystem. err.println("Hello exception: ™) ;

e.pEint3tackTrace (] ;

Compilation and deploiement

* Compile all the classes
* javac *
* Server
* Hellolnterface, Hellolmpl, Serveur

* Client
* Client, HelloInterface

* Create jar for deploiement

Execution

* rmiregistry &
* Default port : 1099
* -J-Dsun.rmi.loader.logLevel=BRIEF to see what is going on

* Start the server
* java -Djava.security.policy=java.policy HelloServer &

* Start the client
* java HelloClient &

Security

* Allowing distant connection is dangerous
* Executing downloaded code is dangerous

* Security policies describe authorisations
* No policy implies that external connection are refused
* java.policy files

Seules utilisations autorisées Dangereux! (dans la vraie vie)
grant { grant {
permission java.net.SocketPermission permission java.security.AllPermission ;
"#%:1024-65535", "connect ,accept ,resolve"; T

permission java.net.SocketPermission
"%:80", "comnect";

};

-Djava.security.policy=<nom du fichier>- '

RMI execution in Java

@ IVM client |

e
.o-'_-__ 1
., e b,

©,

"ll e
A -
.,

@ JVM serveur]

Downloading classes

* Stubs and class can be stored on a web site
* Automatic download on clients

* Download occurs when
* The client receive a stub not in his CLASSPATH
* The server receive an object reference for an unknown class

* Class localisation using a codebase specification

-Djava.rmi.server.codebase="http://toto.loria.fr/truc.jar http://sun.com/Javalir/"

RMI and Code downloading

Machine Client Machine Annuaire

Machine Serveur Web '

Machine Sery

eur d'objets

Impl Stub Skel

class . ' A
insl:anceo [::] A

Polymorphism and RMI

* Polymorphism
* As usual by subtyping
* The subtype code is downloaded
* Allows code evolution

* Parameter passing

* The server provides m(C p)

* The client request server.m(x) . Classe(x)<C
* Result

* The client calls C r=server.m(...)

* The server return a result of class C2<C

Object Factory and reference passing

* A client want a new reference from a server object

* It requires it from a factory object
* Example : a session object for each client

Asynchronous calls and concurrency

* Several clients ask for services
* What is the behaviour of the server ?

* Use of thread in the server
* Concurrent calls
* Concurrent access to ressources
* Explicit management of concurrency

Callbacks

* The server informs the clients of events

* Solution

* The client immplements a remote object that can be called by the
server

* The server provides an interface to register the client remote
reference (the callback object)

* When a relevant event occurs, the server calls a method on the
client.

* The server maintains a list of client objects.
* The server needs to make series of synchronous calls

Distributed Garbage Collection

* If there is a reference to an object (remote or local) the
object continue to exist

* Uses reference counting

* When a client C receive a remote ref, it notify the server process
and creates a proxy.

* When the ref is garbaged on C the ref is removed on the server
* Lease expiration is used to cope with client failure

Design Patterns and Distributed Systems

* General principle : Separation of concern
* Manage separately orthogonal dimensions
* Reduce interferences
* Allow independant evolutions

* Obtained with
* Encapsulation
* Abstraction
* Components
* Aspect Oriented Programming

Proxy

* Access to a distant object
* Isolate the client from the server
* The proxy object manage the communication

—
L

:
—

j Post-traitement

Eﬂ Interface 1
I i I N .

Proxy (from the GOF Book)

Cifent = Subject
Hequest|)
RealSubject ‘M Proxy
Request() Request() O-f-------—- realSubject-=Request(); 1
~,
(" aClient

; aProxy B
| subject o aRealSubject |
~ realSubjecl - — _/l

The Factory

* Separate the choice of an implementation from its use
* Provide methods to create concrete objects
* The client only knows interfaces*

* Replace by dependency injection

Wrapper ou adapter

* A client requires a different interface than the servant

Client - Target Adaptee

Fequest} SpecificRequest()

A A

timplementation)

Adapter
Request() O-F------—-1 SpecificRequest() H

C. A. R. Hoare

| conclude that there are two ways of constructing a
software design: One way is to make it so simple that there
are obviously no deficiencies and the other way is to make
it so complicated that there are no obvious deficiencies.

	Slide 1
	Goals
	Content
	Bibliography
	Distributed Systems
	Examples
	Evolution of scales
	Distributed System
	Trends in distributed systems
	Challenges
	Scalability
	Failure Handling
	Transparency
	System Models
	Physical Models
	Architectural Models
	Placement
	Tiered Architectures – One Tier
	Two Tiers
	Three tiers
	Multi-tiers
	Other patterns
	Middleware Solutions
	Remote Invocation
	Request Reply Protocols
	Call Semantics
	Transparency
	RPC
	Three key issues
	Splitting the application
	SUN RPC (1988)
	SUN RPC
	Naming and binding
	Registry : from name to address
	Data representation
	Data representation on the network
	Parameter passing
	Aliasing Problems
	Failures
	RPC Call semantics
	Distributed Objects
	RPC vs RMI (Remote Method Invocation)
	Java RMI
	Implementation of RMI
	Implementing a distributed object
	Programming principles
	Example
	Example
	Example
	Example
	Compilation and deploiement
	Execution
	Security
	RMI execution in Java
	Downloading classes
	RMI and Code downloading
	Polymorphism and RMI
	Object Factory and reference passing
	Asynchronous calls and concurrency
	Callbacks
	Distributed Garbage Collection
	Design Patterns and Distributed Systems
	Proxy
	Proxy (from the GOF Book)
	The Factory
	Wrapper ou adapter
	C. A. R. Hoare

