
NoSQL databases

Harri Kauhanen
2010-03-09

Database paradigms

Relational (RDBMS)

NoSQL

Key-value stores

Document databases

Wide column stores (BigTable and clones)

Graph databases

Others

•
•

•

•

•

•

•

Relational databases

ACID (Atomicity, Consistency, Isolation
and Durability)

SQL

MySQL, PostreSQL, Oracle, ...

•

•
•

id name mood birth_date color

12 Stella Happy 2007-04-01 NULL
13 Wimma Hungry NULL black
9 Ninja NULL NULL NULL

id: integer
name: varchar

dog
id: integer

dog_id: integer

bark

bark: text

id: integer
bark_id: integer

comment

dog_id: integer
comment: text

mood: varchar
birthdate: date
color: enum

Key-value stores
“One key, one value, no duplicates, and

crazy fast.”

It is a Hash!

The value is binary object aka. “blob” –
the DB does not understand it and does
not want to understand it.

Amazon Dynamo, MemcacheDB, ...

•

•
•

•

dog_12

“key”
...
name_

€#_Stella^^^
mood_€#_Happy^^^

birthdate%///135465645)
...

“value”

Document databases

Key-value store, but the value is (usually)
structured and “understood” by the DB.

Querying data is possible (by other means
than just a key).

Amazon SimpleDB, CouchDB, MongoDB,
Riak, ...

•

•

•

dog_12

 {
 type: “Dog”,
 name: “Stella”,
 mood: “Happy”,
 birthdate: 2007-04-01
 }

“key”

“document”

id name mood birth_date color

12 Stella Happy 2007-04-01 NULL
13 Wimma Hungry NULL black
9 Ninja NULL NULL NULL

vs.

dog_12

{
 type: “Dog”,
 name: “Stella”,
 mood: “Happy”,
 birthdate: 2007-04-01,
 barks: [
 {
 bark: “I had to wear stupid..”
 comments: [
 {
 dog_id: “dog_4”,
 comment: “You look so cute!”
 }, {
 dog_id: “dog_14”,
 comment: “I hate it, too!”
 }
]
 }
]
}

Wide column stores

Often referred as “BigTable clones”

"a sparse, distributed multi-dimensional
sorted map"

Google BigTable, Cassandra (Facebook),
HBase, ...

•
•

•

dog_12

“row-id” “column family”

birthdate

“title”

2007-04-01

“column”

15

“time” “value”

11
45

mood
mood

25 name

Angry

Happy

Stella

dog
dog
dog
dog

text I had to wear...11 bark

34 color Blackdog

Graph databases

“Relation database is a collection loosely
connected tables” whereas “Graph
database is a multi-relational graph”.

Neo4j, InfoGrid, ...

•

•

dog_12

Stella

name

Happy mood

2007-04-01

birth_date

Dog

type

bark_59

comment_83

barks

comments

comment_to

I had to wear stupid...

You look so Cute

dog_4

Relationships in RDBMS are “weak”.

You may “define” one by using constraints,
documenting a relationship, writing code, using
naming conventions etc.

Relationships in graph databases are first
class citizens.

There are no relationships in key-value
stores, document databases and wide
column stores.

You may “define” one by using validations,
documenting a relationship, writing code, using

•
•

•

•

•

Relational databases have almost limitless
indexing, and a very strong language for
dynamic, cross-table, queries (SQL)

That’s why they handle all kinds of
relationships well and dynamically.

NoSQL databases...

...might have limited support for dynamic
queries and indexing

...don’t support JOIN like operations of SQL

...but you can store some relationships into
document itself

•

•

•
•

•
•

How to query NoSQL?
Key-Value

Row-id/column-family:title[/time]

“stella_12”/”dogs”:”name” ! Stella

Graph traversal

API

Query-language

Integration to indexing and search engines

Map-Reduce

•
•

•

•
•
•
•
•

Map-Reduce
“MapReduce is a programming model and

an associated implementation for
processing and generating large data sets.”

Often JavaScript (NoSQL
implementations)

•

•

Map-function

Generates “indexed view” of
data/documents

This view is just another hash, but both
key and value can be “anything”

•

•

function map(doc) {
 if (doc['type'] == 'Dog') {
 emit(doc['mood'], doc['birthdate']);
 }
}

Reduce-function

Aggregate results for a “view” (after the
Map-function)

•

function reduce(mood, listOfBirthdates) {
 return averageBirthDate(listOfBirthdates);
}

Map-phase is easy to distribute, but you is
also easy to write poor Reduce-functions

•

Theorems
CAP

Consistency,
Availability,
Partition tolerance

“Pick two”

•
•

•
N/R/W (adjusting

CAP)
•

No consistency?

Eventual consistency

Why NoSQL?
Schema-free

Massive data stores

Scalability

Some services simpler to implement than
using RDBMS

Great fit for many “Web 2.0” services

•
•
•
•

•

Why NOT NoSQL

DRBMS databases and tools are mature

NoSQL implementations often “alpha”

Data consistency, transactions

“Don’t scale until you need it”

•
•
•
•

RDBMS vs. NoSQL

Strong consistency vs. Eventual
consistency

Big dataset vs. HUGE datasets

Scaling is possible vs. Scaling is easy

SQL vs. Map-Reduce

Good availability vs. Very high availability

•

•
•
•
•

Questions?

