Design patterns

Sources LOOK INSIDE!

» Cours de Pascal Molli « A Design Patterns

Elements of Reusable

System Of Patte rn » Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson

Bushmann et All raioh

» « Design Patterns » _
Gamma et All (GoF) oo

=
» « Applying UML and ®
Patterns » Larman A .
L Dating Design
» "Design Patterns Java™ Patterns
Workbook" Steven John o i
Metsker o S

With special assistance from
Steve “Half Bad Boy Plus Protocol” Swillvellis

Design for change

» You should avoid
Creating an object by specifying a class explicitly.
Dependence on specific operations.
Dependence on object representations or implementations.
Algorithmic dependencies.
Tight coupling.
Extending functionality by subclassing.
Inability to alter classes conveniently

Patterns...

4

« Patterns help you build on the collective experience of
skilled software engineers. »

« They capture existing, well-proven experience in
software development and help to promote good design
practice »

« Every pattern deals with a specific, recurring problem in
the design or implementation of a software system »

« Patterns can be used to construct software
architectures with specific properties... »

Becoming a Chess Master

» First learn rules and
physical requirements

» Then learn principles

» However, to become a
master of chess, one must
study the games of other
masters

» There are hundreds of
these patterns

Becoming a Software Designer Master

m First learn the rules
e.g., the algorithms, data structures and languages of software
» Then learn the principles

e.g., structured programming, modular programming, object
oriented programming, generic programming, etc.

» However, to truly master software design, one must study
the designs of other masters

These designs contain patterns must be understood,
memorized, and applied repeatedly

» There are hundreds of these patterns

What is a pattern ?

» A pattern addresses a recurring design problem that

arises in specific design situations, and presents a solution
to it.

» Patterns document existing, well-proven design
experience.

» Patterns identify and specify abstractions that are above
the level of single classes and instances, or of components

» Patterns provide a common vocabulary and
understanding for design principles

From POSA

What is a pattern

» Patterns are a means of documenting soffware
architectures.

» Patterns support the construction of software with
defined properties.

» Patterns help you build complex and heterogeneous
software architectures.

» Patterns help you to manage somare complexity.

What is a pattern (continued)

» A pattern for software architecture describes a particular
recurring design problem that arises in specific design
contexts, and presents a well-proven generic scheme for
its solution.

» The solution scheme is specified by describing its
constituent components, their responsibilities and
relationships, and the ways in which they collaborate.

Pattern constitution

Pattern

—— Context

L Design situation giving rise to a design problem
Problem

- Set of forces repeatedly arising in the context

—— Solution
L Configuration to balance the forces

—— Structure with components and relationships

— Run-time behaviour

Patterns categories

» Design Patterns

» ldioms

Architectural Patterns

» An architectural Pattern
express a fundamental
structural organization
schema for software
systemes.

» It provides a set of
predefined subsystems,
their responsibilities, and
includes rules and
guidelines for organizing
the relationships between
them.

12 P. Molli

Design patterns

» A design pattern provides
a scheme for refining the
subsystems or
components of a software
system, or the relation
ships between them.

» It describes a commonly-
recurring structure of
communicating
components that solves a
general design problem
within a particular

context. |
13 P. Molli

Idioms

» An Idiom is a low-level pattern specific to a programming
language.

» An idiom describes how to implement particular aspects
of components or the relationships between them using
the features of the given language.

14 P. Molli

Pattern Description (1)

» Name The name and a short summary of the pattern.
» Also Known As Other names for the pattern, if any are known.

» Example A real-world example demonstrating the existence of the
problem and the need for the pattern. Throughout the description
we refer to the example to illustrate solution and implementation
aspects, where this is necessary or useful. Text that is specifically
about the example is marked by the r symbol at its beginning and by
the D symbol at its end.

» Context The situations in which the pattern may apply

» Problem The problem the pattern addresses, including a discussion
of its associated forces.

» Solution The fundamental solution principle underlying the pattern.

» Structure A detailed specification of the structural aspects of the
pattern, including CRC-cards

Pattern description (2)

>

Dynamics Typical scenarios describing the run-time behavior of the
pattern.

Implementation Guidelines for implementing the pattern.

Example resolved Discussion of any important aspects for
resolving the example that are not yet covered in the Solution,
Structure, Dynamics and Implementation sections.

Variants A brief description of variants or specializations of a
pattern.

Known Uses Examples of the use of the pattern, taken from
existing systems.

Consequences The benefits the pattern provides, and any potential
liabilities.

See Also References to patterns that solve similar problems, and to
patterns that help us refine the pattern we are describing.

Pattern description (Gof)

Name — Aliases
Motivation

Applicability

Participants

4

4

4

» Structure
4

» Collaborations
4

Consequences

How patterns solve problems

» Finding Appropriate Objects

» Determining Object Granularity

» Specifying Object Interfaces

» Specifying Object Implementations

Class versus Interface Inheritance

Programming to an Interface, not an Implementation
» Putting Reuse Mechanisms to Work
Inheritance versus Composition

Favor object composition over class inheritance.

Delegation

How patterns solve problems (2)

» Example of delegation

The window delegates to the rectangle its behavior

Window

rectangle

Rectangie

Area() o
1
|
1
|
|
|
|
1
|
1
|

return rectangle—=Areal)

Area(] ¢

width
height

return width * height

Relating Run-Time and Compile-Time
Structures

» acquaintance relationship

A class that refers to another class has an acquaintance with
that class.

» aggregation relationship

The relationship of an aggregate object to its parts.A class
defines this relationship for its instances (e.g., aggregate
objects).

» No difference in programming languages

Common Patterns

» Abstract Factory
» Adapter

» Composite

» Decorator

» Factory Method
» Observer

» Strategy

» Template Method

Adapter

» Convert the interface of a class into another interface
clients expect.

» Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces.

=
\ ! - :
\ »
» W\ 2 z
» =
= g —
v }‘f <]

Motivation

CreateManipulatorn()

CreateManipulator() o

DrawingEditor l-d'l Shape — TextView
BoundingBox]) GetExtent!()
CreateManipulaion)
Tent
Line TextShape
BoundingBox() BoundingBox() O-F--—-————1 returmn text-=GeatExtant()

refum new Textanipelator

Applicability

» Use the Adapter pattern when

you want to use an existing class, and its interface does not
match the one you need.

you want to create a reusable class that cooperates with
unrelated or unforeseen classes, that is, classes that don't
necessarily have compatible interfaces.

(object adapter only) you need to use several existing
subclasses, but it's impractical to adapt their interface by
subclassing every one.An object adapter can adapt the
interface of its parent class.

Structure

Adaptee

SpecificRequeast{)

A

timplemantation)

SpecificRequest()

Adaptes

SpecificHequeast()

Client |—— | Target |
Fequest|}
Adapter
Request() o
Client —— ™ Target i
Requasty)
adaples
Adapter

Request() &

adaptes->SpacificRequest()

Participants

» Target (Shape)
defines the domain-specific interface that Client uses.

» Client (DrawingEditor)

collaborates with objects conforming to the Target interface.

» Adaptee (TextView)

defines an existing interface that needs adapting.

» Adapter (TextShape)
adapts the interface of Adaptee to the Target interface.

Collaborations

» Clients call operations on an Adapter instance.

» In turn, the adapter calls Adaptee operations that carry
out the request.

Consequences

» A class adapter

adapts Adaptee to Target by committing to a concrete Adapter class.
As a consequence, a class adapter won't work when we want to
adapt a class and all its subclasses.

lets Adapter override some of Adaptee's behavior, since Adapter is a
subclass of Adaptee.

introduces only one object, and no additional pointer indirection is
needed to get to the adaptee.

» An object adapter

lets a single Adapter work with many Adaptees—that is, the Adaptee
itself and all of its subclasses (if any). The Adapter can also add
functionality to all Adaptees at once.

makes it harder to override Adaptee behavior. It will require
subclassing Adaptee and making Adapter refer to the subclass rather
than the Adaptee itself.

Decorator

» Attach additional
responsibilities to an
object dynamically.

» Decorators provide a
flexible alternative to
subclassing for extending
functionality.

Motivation

aBorderDecorator

aScrollDecoralor -

aTextView -

S applcalors woukl bersd|
Trizims Lsding abjeets 5 Fodel ey
aepeci al thar lunchansity bt

A nares dasign snieaac woukd by
prokibiiely gapansve

Far waarrphs, mmal dosurwnt wi-
ers mrerdubariss e) bormsi-
I e sk g Scliss G some
anlnrl, Homesess, vy rwarabhy
siof abart of Lairg ohjects o
mprasan] gush champeks and
graphical sumant n te decumsd
Doy 5 wulel prevomtes Auitility
al the sl byel e
appb=san, Teel aml gaphkics
il by Imatad urilormy wik

.

@l | &

VisualComponent

Draw()

component-=Draw()

Decorator:Drawl);
DrawBordes);

=

comgonent
TextView Decorator
Draw() Drawi(} ©——-1
| |
ScrolliDecorator BorderDecorator
Diraw() Draw() O---—-----
ScrollTol) DrawBorder)
scrall Position horderWwidth

Applicability

» Use Decorator

to add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

for responsibilities that can be withdrawn.

when extension by subclassing is impractical. Sometimes a large
number of independent extensions are possible and would
produce an explosion of subclasses to support every
combination. Or a class definitionmay be hidden or otherwise
unavailable for subclassing.

Structure

compaonant-=Cpearation()

Component -
Clperation()
| | component
ConcreteComponeant Decorator
Operation) Operation() ©-fF---------=-=---=------=-—1
ConcreteDecoratorA ConcreteDecoratorB
Operation() Operation{) ©9-——-----7-----—1

addedState

AddzdBehaviorn)

Dacorator:Oparation(); j=
AddedBehavior):

Participants

» Component (VisualComponent)

defines the interface for objects that can have responsibilities
added to them dynamically.

» ConcreteComponent (TextView)

defines an object to which additional responsibilities can be
attached.

» Decorator

maintains a reference to a Component object and defines an
interface that conforms to Component's interface.

» ConcreteDecorator (BorderDecorator, ScrollDecorator)

adds responsibilities to the component.

Collaborations

» Decorator forwards requests to its Component object. It
may optionally perform additional operations before and
after forwarding the request.

Consequences

» Decorator Pattern
More flexibility than static inheritance.
Avoids feature-laden classes high up in the hierarchy.
A decorator and its component aren't identical.

Lots of little objects.

Composite

» Compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly.

ccey-Ne-sa20 - http://www.flickr.com/photos/dunechaser/

Motivation

aPicture

aText

| aline |

Graphic

Dlraw}
Add{Graphic)

Remove(Graphic)

Gatishiidyint)

A

aRectangle

GelChikd(int)

graphics
Line Rectangle Text Picture o
Dirawi} Drawi) Diraw}) Draw() O~ --——~"f-——~-—"~"=-=---
Add{Graphic gy ©-p----- !
Remove{Eraph) 1

farall g in graphics
g.Crraw)

T

===+ add g to list of graphics

=

aRectangle

Applicability

» Use the Composite pattern when

you want to represent part-whole hierarchies of objects.

you want clients to be able to ignore the difference between
compositions of objects and individual objects.

Clients will treat all objects in the composite structure
uniformly.

GoF

Structure

Client

Gt hild{int)

L e Component L...
Oparation(}
Addf{Componant)
Hamova{Componant)
GaltChild(ing)
childeen
Leaf Composite . _——————
Operation() Operation{y =------f-———-=---—-
Add{Component)
Hemove[Componant)

forall g in chiidren
g.Operation();

T

Participants

» Component (Graphic)
declares the interface for objects in the composition.

implements default behavior for the interface common to all classes, as
appropriate.

declares an interface for accessing and managing its child components.

(optional) defines an interface for accessing a component's parent in the
recursive structure, and implements it if that's appropriate.

» Leaf (Rectangle, Line, Text, etc.)
represents leaf objects in the composition. A leaf has no children.
defines behavior for primitive objects in the composition.
» Composite (Picture)
defines behavior for components having children.
stores child components.
implements child-related operations in the Component interface.
» Client
manipulates objects in the composition through the Component interface.

Collaborations

4

Clients use the Component class interface to interact
with objects in the composite structure.

If the recipient is a Leaf, then the request is handled
directly.

If the recipient is a Composite, then it usually forwards
requests to its child components, possibly performing
additional operations before and/or after forwarding.

Consequences

» The Composite pattern

defines class hierarchies consisting of primitive objects and
composite objects.

makes the client simple. Clients can treat composite structures
and individual objects uniformly.

makes it easier to add new kinds of components. Newly
defined Composite or Leaf subclasses work automatically with
existing structures and client code. Clients don't have to be
changed for new Component classes.

can make your design overly general. The disadvantage of
making it easy to add new components is that it makes it
harder to restrict the components of a composite.

Abstract Factory (Kit)

» Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

Motivation

WidgetFactory |

CreateScroliBan]
CreateWindow(}

MotifWidgetFactory |-

PMWidgetFactory

CreateScrollBar(}
CreateWindow()

CreateScrollBar()
CreateWindow()

Client

Window (=
| |
——-| PMWindow MotifWindow fet--,
1
]
]
]
]
]
]
i
ScrollBar :
'
]
]
| | :
- PMScrollBar MotifScrollBar (v~ -!
:
i

Applicability

» Use the Abstract Factory pattern when

a system should be independent of how its products are
created, composed, and represented.

a system should be configured with one of multiple families of
products.
a family of related product objects is designed to be used

together; and you need to enforce this
constraint.

you want to provide a class library of products, and you want
to reveal just their interfaces, not
their implementations.

GoF

Structure

AbstractFactory = Client
CresteProductd ()
CraateProduct8() AbstractProductA =
| |
\= - ProductA2 ProductAl | --,
(]]
Concretefactoryl - ConcreteFactory2 | - ____ : :
CreateProductA() | CreateProductA() : ;
CreateProductB() 1 CreateProduciB{) AbstractProducts (=
] I I
i ' '
i : [| :
| ‘=== ProductB2 ProductB1 - -
!]
5 :

Participants
» AbstractFactory (WidgetFactory)

declares an interface for operations that create abstract product
objects.

» ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)

implements the operations to create concrete product objects.

» AbstractProduct (Window, ScrollBar)
declares an interface for a type of product object.

» ConcreteProduct (MotifWindow, MotifScrollBar)

defines a product object to be created by the corresponding
concrete factory.

implements the AbstractProduct interface.

» Client

uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

Collaborations

» Normally a single instance of a ConcreteFactory class is
created at run-time. This concrete factory creates
product objects having a particular implementation. To
create different product objects, clients should use a
different concrete factory.

» AbstractFactory defers creation of product objects to its
ConcreteFactory subclass.

Consequences

» It isolates concrete classes.
» It makes exchanging product families easy.
» It promotes consistency among products.

» Supporting new kinds of products is difficult.

Factory Method (Virtual Constructor)

» Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

Motivation

Dacuimant

| docs

Application

Openi)
Cilosel)
Savel)
Hewveart()

CreateDocumenti)
MewDocument() o

OpenDocument()

Document® doc = Createlocumenti); h
docs. Add{doc):
doc-=0pean();

?

£

MyDocument

My Application

CraateDocument() o

refum new MyDocumeant

Applicability

» Use the Factory Method pattern when

GoF

a class can't anticipate the class of objects it must create.
a class wants its subclasses to specify the objects it creates.

classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of which
helper subclass is the delegate.

Structure

Product

ConcreteProduct "

Creator

FactoryMethody)

product = FactoryMethod()

=

AnCparation() i
ConcreleCreator
-

FactoryMethod()

return new ConcreteProduct

Participants

» Product (Document)
defines the interface of objects the factory method creates.

» ConcreteProduct (MyDocument)
implements the Product interface.

» Creator (Application)

declares the factory method, which returns an object of type
Product. Creator may also define a default implementation of
the factory method that returns a default ConcreteProduct
object.

may call the factory method to create a Product obiject.
» ConcreteCreator (MyApplication)

overrides the factory method to return an instance of a
ConcreteProduct.

Collaborations

» Creator relies on its subclasses to define the factory
method so that it returns an instance of the appropriate
ConcreteProduct.

Consequences

Provides Hook for subclasses.

Connect parallel class hierarchies.

Figure

Craateldanipilaton)

A

e Client | m| manipulator

CroweniClicky'|

LineFigure

TextFigure

Createdaniputaton)

Crreatabtanimulaion)

Oragyf)
LSk}
LineManipulator TextManipulator
DowniClcki) DownGEcki)
Diragi} Dragi)
e LEpCilick() e LipClick)

» Define a one-to-many dependency between objects so
that when one object changes state, all its dependents are
notified and updated automatically.

Motivation

observers
. windaw |!ﬂ| . weindira I! . itk |!ﬂ|

a 4] C
» |60 130110
vl 60| 30 | 20
2180110 |10

a C

*-a_\ b) _.-"f

———= change notification
———— requests, modification

subject

Applicability

» Use the Observer pattern in any of the following
situations:
When an abstraction has two aspects, one dependent on the

other. Encapsulating these aspects in separate objects lets you
vary and reuse them independently.

» When a change to one object requires changing others,

and you don't know how many objects need to be
changed.

» When an object should be able to notify other objects
without making assumptions about who these objects are.

In other words, you don't want these objects tightly

coupled.
GoF

Structure

Subject

obhservers

-..] Observer

Attach{Observer)
Detach{Obsarver)
Motify() m-——-- -4

for all o in observers |

--| o-=Update()

A

|

i

ConcreteSubject

subject

Update])

T

ConcreteObserver

GetState() ©---
=etStated)

retum subjectStale

subjectstate

Updated) ==

ohsarvarstato

obsererstate = ™
subject-=GetStatel)

Participants

» Subject

knows its observers. Any number of Observer objects may observe a
subject.

provides an interface for attaching and detaching Observer objects.

» Observer

defines an updating interface for objects that should be notified of
changes in a subject.

» ConcreteSubject
stores state of interest to ConcreteObserver objects.
sends a notification to its observers when its state changes.

» ConcreteObserver
maintains a reference to a ConcreteSubject object.
stores state that should stay consistent with the subject's.

implements the Observer updating interface to keep its state
consistent with the subject's.

Collaborations

» ConcreteSubject notifies its observers whenever a change
occurs that could make its observers' state inconsistent
with its own.

» After being informed of a change in the concrete subject,
a ConcreteObserver object may query the subject for
information. ConcreteObserver uses this information to
reconcile its state with that of the subject.

Collaborations

aConcreteSubject aConcreteObserver anotherConcreteObserver

1

SetState()

Motify()

- |

Update()

GetState()
- L
Update()

GetStaEEJLJ
el

Consequences

Abstract coupling between Subject and Observer.
Support for broadcast communication.

Unexpected updates.

Strategy

» Define a family of algorithms, encapsulate each one, and
make them interchangeable.

» Strategy lets the algorithm vary independently from
clients that use it.

Motivation

Composition f:h_t:urnpuﬁumr = Compositor
Traverse() Lampose()
Hepairi) 0 /k
:
|
1
: = SimpleCompositor TeXCompositor ArrayCompositor
compositor-=Compose()
Composed) Composal) Composal)

Applicability

» Use the Strategy pattern when

GoF

many related classes differ only in their behavior. Strategies
provide a way to configure a class with one of many behaviors.

you need different variants of an algorithm. For example, you
might define algorithms reflecting different space/time trade-
offs. Strategies can be used when these variants are
implemented as a class hierarchy of algorithms [HO87].

an algorithm uses data that clients shouldn't know about. Use
the Strategy pattern to avoid exposing complex, algorithm-
specific data structures.

a class defines many behaviors, and these appear as multiple
conditional statements in its operations. Instead of many
conditionals, move related conditional branches into their own
Strategy class.

Structure

Context

Contextinterface()

stratedqy

-

Strategy

Algorithminterface(}

ConcrateStrategyA

ConcreteStrategyB

ConcreteStrateqyC

Algorithminterfacsl)

Algorithmirerface!)

Algorithminterfacel)

Participants

» Strategy (Compositor)

declares an interface common to all supported algorithms.
Context uses this interface to call the algorithm defined by a
ConcreteStrategy.

» ConcreteStrategy (SimpleCompositor, TeXCompositor,
ArrayCompositor)
implements the algorithm using the Strategy interface.
» Context (Composition)
is configured with a ConcreteStrategy obiject.
maintains a reference to a Strategy object.
may define an interface that lets Strategy access its data.

Collaborations

» Strategy and Context interact to implement the chosen
algorithm.A context may pass all data required by the
algorithm to the strategy when the algorithm is called.
Alternatively, the context can pass itself as an argument to
Strategy operations. That lets the strategy call back on the
context as required.

» A context forwards requests from its clients to its
strategy. Clients usually create and pass a
ConcreteStrategy object to the context; thereafter, clients
interact with the context exclusively.There is often a
family of ConcreteStrategy classes for a client to choose
from.

Consequences

Families of related algorithms.

An alternative to subclassing.

Strategies eliminate conditional statements.

A choice of implementations.

Clients must be aware of different Strategies.
Communication overhead between Strategy and Context.

Increased number of objects.

Template Method

» Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses.

» Template Method lets subclasses redefine certain steps of
an algorithm without changing the algorithm's structure.

Second Life™

SKIN & CLOTHES

Motivation

Document

Savel}
peni)
Closa()
DoHead))

MyDocument

DoRead()

docs

Application

AddDocument{)
OpenDocumeant()
DoCreatalocument]
CanCpenDocurment
AboutTeOpenDocument()

MyApplication

DoCreateDocument(y £
CanOpenDocumeant()

AboutToOpenDocument()

raturn new MyDocumeant

Applicability

» The Template Method pattern should be used

to implement the invariant parts of an algorithm once and leave it up
to subclasses to implement the behavior that can vary.

when common behavior among subclasses should be factored and
localized in a common class to avoid code duplication. This is a good
example of "refactoring to generalize" as described by Opdyke and
Johnson [O]93].You first identify the differences in the existing code
and then separate the differences into new operations. Finally, you
replace the differing code with a template method that calls one of
these new operations.

to control subclasses extensions.You can define a template method
that calls "hook" operations (see Consequences) at specific points,
thereby permitting extensions only at those points.

GoF

Structure

AbstractClass

TemplateMathod() © -
PrimitiveOperation i)
PrimitiveOpetalion2()

£

ConcreteClass

PrimitiveOperation1()
PrimitiveCparation2()

PrimitiveQperation)

.F;rlrnatiuef_‘,lpera lion2()

T

Participants
» AbstractClass (Application)

defines abstract primitive operations that concrete subclasses
define to implement steps of an algorithm.

implements a template method defining the skeleton of an
algorithm. The template method calls primitive operations as
well as operations defined in AbstractClass or those of other
objects.

» ConcreteClass (MyApplication)

implements the primitive operations to carry out subclass-
specific steps of the algorithm.

Collaborations

» ConcreteClass relies on AbstractClass to implement the
invariant steps of the algorithm.

Consequences

Template methods lead to an inverted control structure that's
sometimes referred to as "the Hollywood principle,” that is,
"Don't call us, we'll call you" [Swe85].This refers to how a
parent class calls the operations of a subclass and not the
other way around.

It's important for template methods to specify which
operations are hooks (may be overridden) and which are
abstract operations (must be overridden).To reuse an abstract
class effectively, subclass writers must understand which
operations are designed for overriding.

How to select a design pattern

» Consider how design patterns solve design problems.
» Scan Intent sections.

» Study how patterns interrelate.

Patterns organisation

» Creational patterns
» Structural patterns
» Behavioral patterns

Creational patterns

» Abstract Factory

families of product objects
» Builder

how a composite object gets created
» Factory Method

subclass of object that is instantiated
» Prototype

class of object that is instantiated

» Singleton

the sole instance of a class

Structural patterns

4

Adapter

interface to an object
Bridge

implementation of an object
Composite

structure and composition of an object
Decorator

responsibilities of an object without subclassing
Facade

interface to a subsystem
Flyweight

storage costs of objects
Proxy

how an object is accessed; its location

Behavioral patterns
» Chain of Responsibility

object that can fulfill a request
» Command
when and how a request is fulfilled
» Interpreter
grammar and interpretation of a language
» lterator
how an aggregate's elements are accessed, traversed
» Mediator
how and which objects interact with each other
» Memento
what private information is stored outside an object, and when

Behavioral patterns

» Observer

number of objects that depend on another object; how the
dependent objects stay up to date

» State
states of an object
» Strategy
an algorithm
» Template Method
steps of an algorithm
» Visitor

operations that can be applied to object(s) without changing
their class(es)

Proxy

» Provide a surrogate or placeholder for another object to
control access to it.

Motivation

(_aTextDm:urnent w
- | anlmageProxy
L\lmage * — animage -W
fileMame w----- j— —————
data
| I IMEMOTyY | | ot oiisk J
DocumentEditor W
Drawy]
GelExtent])
Stara{)
Load()
Imagz TR —— ImageProxy il (image == 0) =
) image = Loadimage(fleMamea);
Draw]) Image| prawi} O mm o - e Draw(
GetExtent() GetExtent() o ----= image—>Draw()
Store]) Slorel) i
it i I if {image == 0) {
Loadi) Load{) [USSP return axtant;
o e } eise |
imagelmp fileMName return image-=GetExtant();
exlent extent

Applicability
» A remote proxy provides a local representative for an
object in a different address space.

» A virtual proxy creates expensive objects on demand.
The ImageProxy described in the Motivation is an
example of such a proxy.

» A protection proxy controls access to the original object.

» A smart reference is a replacement for a bare pointer
that performs additional actions when an object is
accessed

GoF

Structure

Subject
Requesif)
. realSubiect
RealSubject Proxy
Fequest() Hequest() O-f--—-—---- realSubject-=Request();
) ™
aClient —,
aProxy
k subject — . aRealSubject \I
realSubject - ~ _J

Participants

» Proxy (ImageProxy)

maintains a reference that lets the proxy access the real
subject. Proxy may refer to a Subject if the RealSubject and
Subject interfaces are the same.

» Subject (Graphic)

defines the common interface for RealSubject and Proxy so
that a Proxy can be used anywhere a RealSubject is expected.

» RealSubject (Image)

defines the real object that the proxy represents.

Collaborations

» Proxy forwards requests to RealSubject when
appropriate, depending on the kind of proxy.

Consequences

The Proxy pattern introduces a level of indirection when
accessing an object. The additional indirection has many uses,
depending on the kind of proxy:

|.A remote proxy can hide the fact that an object resides in a
different address space.

2.A virtual proxy can perform optimizations such as creating an
object on demand.

3. Both protection proxies and smart references allow additional
housekeeping tasks when an object is accessed.

Command

» Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations.

Motivation

Application S Menuy ERM Menultem 2> W= Command

command
Add{Menultam) Clicked{) ¢ Execule|)
:
|

Command-=Execute) H I

Add{Document)

Documeant

Openi)
Closal
Uty

Copyl)
Paste(

Motivation (2)

Application

Add{Document)

Command

Executef)

OpenCommand
application pa

Execute() Q
Asklser()

namea = Askiisar)

doc—=0Opent)

doc = new Document{name)
application-=Add{doc)

T

Command

Exaclitel)

r-l

A

MacroCommand

Execute(} 9

COMmands

for all ¢ in commands]

C-=Execute()

Applicability

» Use the Command pattern when you want to

GoF

parameterize objects by an action to perform, as Menultem
objects did above.

specify, queue, and execute requests at different times.

support undo.The Command's Execute operation can store
state for reversing its effects in the command

support logging changes so that they can be reapplied in case
of a system crash.

structure a system around high-level operations built on
primitives operations. Such a structure is common in
information systems that support transactions.

Structure

Client

Invoker

..l Heceiver

Action{)

FECEnEr

p Command

Executef}

ConcreteCommand

1 recaiver-=Action(),

Participants

» Command
declares an interface for executing an operation.
» ConcreteCommand (PasteCommand, OpenCommand)

defines a binding between a Receiver object and an action.

implements Execute by invoking the corresponding operation(s) on
Receiver.

» Client (Application)

creates a ConcreteCommand object and sets its receiver.
» Invoker (Menultem)

asks the command to carry out the request.

» Receiver (Document, Application)

knows how to perform the operations associated with carrying out
a request.Any class may serve as a Receiver.

Collaborations

» The client creates a ConcreteCommand object and
specifies its receiver.

» An Invoker object stores the ConcreteCommand object.

» The invoker issues a request by calling Execute on the
command.When commands are undoable,

» ConcreteCommand stores state for undoing the
command prior to invoking Execute.

» The ConcreteCommand object invokes operations on its
receiver to carry out the request.

Collaborations

aReceiver aClient aCommand aninvoker

| .

ey CommandaPeceivarn

StoraCommand{aCommand)

s o o

I;I" Action) ;|‘

Execuiel)

Consequences

Command decouples the object that invokes the operation
from the one that knows how to perform it.

Commands are first-class objects. They can be manipulated and
extended like any other object.

You can assemble commands into a composite command.An
example is the MacroCommand class described earlier.

It's easy to add new Commands, because you don't have to
change existing classes.

State

» Allow an object to alter its behavior when its internal
state changes. The object will appear to change its class.

Motivation

. state
TCPConnection s - TCPState
Open() O------ I Opany
Closel) i Glose()
Acknowladgea() : Acknowledgef)
|
:
|
I
stata—=0pen() o
TCPEstablished TCPListen TCPClosed
Opend) Cxpend) Openi}
Closa() Closal) Close()
Acknowladne|) Acknowledne() Acknowiedge()

Applicability

» Use the State pattern in either of the following cases:

An object's behavior depends on its state, and it must change
its behavior at run-time depending on that state.

Operations have large, multipart conditional statements that
depend on the object's state.

GoF

Structure

Requast]) O

Context -

Stae

.J State

state-=Handla(}

Handlef)

A}

ConcreteState A

Handle()

ConcreteStateB

Handie!)

Participants

» Context (TCPConnection)
defines the interface of interest to clients.

maintains an instance of a ConcreteState subclass that defines
the current state.

» State (TCPState)

defines an interface for encapsulating the behavior associated
with a particular state of the Context.
» ConcreteState subclasses (TCPEstablished, TCPListen,
TCPClosed)

each subclass implements a behavior associated with a state of
the Context.

Collaborations

» Context delegates state-specific requests to the current
ConcreteState object.

A context may pass itself as an argument to the State object
handling the request.This lets the State object access the
context if necessary.

Context is the primary interface for clients. Clients can
configure a context with State objects. Once a context is

configured, its clients don't have to deal with the State objects
directly.

Either Context or the ConcreteState subclasses can decide
which state succeeds another and under what circumstances.

Consequences

It localizes state-specific behavior and partitions behavior for
different states.

It makes state transitions explicit.
State objects can be shared.

Visitor
» Represent an operation to be performed on the elements
of an object structure.

» Visitor lets you define a new operation without changing
the classes of the elements on which it operates.

Motivation

Node

TwpeCheck()

GenerafeCode()

PrattyPririt()
VariableRefNode AssignmentNode
FypeCheck() TypeCheck()
GenerateCoda() GenerateCode()
PrethyPrint) PrethyPrint)

Nodelisitor

VisitdssignmenitfdssignmenthNods)
VisitWarnableRelfVarablaReNods)

A

TypeCheckingVisitor CodeGeneratingVisitor

VistAssignment{AssignmentMode) VisrAssignment{AssignmentModea)
VisitWariable Ref{VariableRafMode) VisiVariable Ref{(WariableRafMode)

Applicability

» Use the Visitor pattern when

GoF

an object structure contains many classes of objects with
differing interfaces, and you want to perform operations on
these objects that depend on their concrete classes.

many distinct and unrelated operations need to be performed
on objects in an object structure, and you want to avoid
"polluting” their classes with these operations.

the classes defining the object structure rarely change, but you
often want to define new operations over the structure.
Changing the object structure classes requires redefining the
interface to all visitors, which is potentially costly. If the object
structure classes change often, then it's probably better to
define the operations in those classes.

Structure

Visitor

VisitConcretetliemesntdfConcrateElementA}
Visifl oncreletlementbfLoncraletiemesniy])

A

ConcretaVisitor ConcreteVisitor2

VisitConcreteElermantaConcreleElemanta)
VisitConcreteElementBiConcreteElementB)

VisitConcreteElementa{ConcreteElemeant &)
VisitConcreteElememB{ConcreteElementB)

ObjectStructure 4-4 Element

AcceptVisifor)

A
I |

ConcreteElemeant

ConcreteElemantB

UperationAl)

Uperationk)

AccaptiVisitor v) Q AccaptiVisitor v) Q
| I
1 I
1 I

W :-'-.-fisi1-':|::-|*¢r¢'.c:Eln:|rcfr.a'uj1"|i5]h v-=VisitConcrete ElementBithis)

Participants

» Visitor (NodeVisitor)

declares a Visit operation for each class of ConcreteElement in the object structure.The
operation's name and signature identifies the class that sends the Visit request to the
visitor. That lets the visitor determine the concrete class of the element being visited. Then
the visitor can access the element directly through its particular interface.

» ConcreteVisitor (TypeCheckingVisitor)

implements each operation declared by Visitor. Each operation implements a fragment of
the algorithm defined for the corresponding class of object in the structure.
ConcreteVisitor provides the context for the algorithm and stores its local state. This state
often accumulates results during the traversal of the structure.

» Element (Node)
defines an Accept operation that takes a visitor as an argument.
» ConcreteElement (AssighmentNode,VariableRefNode)
implements an Accept operation that takes a visitor as an argument.
» ObjectStructure (Program)
can enumerate its elements.
may provide a high-level interface to allow the visitor to visit its elements.
may either be a composite or a collection such as a list or a set.

Collaborations

» A client that uses the Visitor pattern must create a
ConcreteVisitor object and then traverse the object structure,
visiting each element with the visitor.

» When an element is visited, it calls the Visitor operation that
corresponds to its class. The element supplies itself as an

argument to this operation to let the visitor access its state, if
necessary.

anQbjectstructure al-oncretekElemanta aConcreteElementB al-oncreteVisitor

J‘ AccepliaVisitor) L

- VisitConcreteElementijaConcreteElamenta)

I Operatiandd)
i
Accept(aVisitor) T]
W | VisitConcreteElementBlaConcreteElementB)
1 OperatianBi}
g

Consequences

Visitor makes adding new operations easy.

A visitor gathers related operations and separates unrelated
ones.

Adding new ConcreteElement classes is hard.
Visiting across class hierarchies.
Accumulating state.

Breaking encapsulation.

» Avoid coupling the sender
of a request to its receiver
by giving more than one
object a chance to handle
the request.

» Chain the receiving
objects and pass the
request along the chain
until an object handles it.

115 S P. Mol

Motivation

Application

116

handler
HelpHandler
—-.l HamdleMelpl) o] -- ——- handler-=HandleHealp{}
Widget
- it can handle | =
Dialog Button ShowHelp()

HandleHeip{} <~
ShowkHelp)

| else |
Handler.:HandleHelg()

1

f

Motivation

aPrintButton aPrintDialog anApplication

|
HandleHelp()
HandleHelp(}
| —|T

117 P. Molli

Structure

1

SUICCE550(
Client = Hancdier
HandleHeguesiy)
ConcreteHandler1 ConcreteHandler2
HandieRequest() HandleRegueast)

118 P. Molli

Participants
» Handler (HelpHandler)

defines an interface for handling requests.
(optional) implements the successor link.

» ConcreteHandler (PrintButton, PrintDialog)
handles requests it is responsible for.
can access its successor.

if the ConcreteHandler can handle the request, it does so;
otherwise it forwards the request to its successor.

» Client

initiates the request to a ConcreteHandler object on the chain.

119 P. Molli

Example...
» Awt |.0

Strategy

» Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.

121

Motivation

Composition {}L:urﬂpuﬁcs[r:lr ™ Compositor
Traverse() Lompose|)
Repair) 0 /k
I
|
: | | |
: i SimpleCompositor TeXCompositor ArrayCompositor
compositor-=Compose()
Compase() Composeal) Composea()

122

P. Molli

Strategy

Context

Contextinterface()

123

strateqy

-

Strateqy

Algorithminterface()

ConcreteStratagy A

ConcreteStrategyB

ConcreteStrategyC

Algardthminterface()

Algorithmimerface()

Algonthminterfacel)

P. Molli

Participants

» Strategy (Compositor)

declares an interface common to all supported algorithms.
Context uses this interface to call the algorithm defined by a
ConcreteStrategy.

» ConcreteStrategy (SimpleCompositor, TeXCompositor,
ArrayCompositor)
implements the algorithm using the Strategy interface.
» Context (Composition)
is configured with a ConcreteStrategy obiject.
maintains a reference to a Strategy object.
may define an interface that lets Strategy access its data.

124 P. Molli

Strategy...

Component
(from awt)

con

T

-
nponent[]

Button
(from awt)

Container
(from awt)

layoutM¢

gr <<Interface=>>

T 7

LayoutManager
(from awt)

<<Interface

(from awt)

LayoutManager2

>>

B

BorderLayout
(from awt)

GridLayout
(from awt)

Bridge

» Decouple an abstraction from its implementation so that
the two can vary independently.

Bridge

Window

XWindow

Window

PMWindow

X'Window

PMWindow lconWindow

XlconWindow

PMiconWindow

Bridge

g

Window o

Drraw T exti)
DrawRect) o-F--

= Windowlmp

DevDrawTexi()
DevDrawline(}

imp—=DevDrawlin F:II]E‘
—— - imp==DevDrawline)
imp—=DevDrawline)
imp—=DevDirawline)

DrawText()

XWindowlmp

PMWindowlmp

DevDrawText() -
DevDrawLine{} G

- == DevDirawline()
DevDirawTaxi)

lconWindow TransientWindow
DrawBorder(} ¢ DrawCloseBox{} §
: :
1 1
| |
! !

DrawRect() ™ DrawRect()

HDrawline()

XDrawString()

Bridge Structure...

i

Abstraction o

Operation{} ¢

£

RefinedAbstraction

_____ imp—=Chparationimpl);

I'L Implementor

Cperafionimpf)

A

Concretelmplementor

ConcretelmplementorB

Cperationtmgl)

Operationtmg)

Bridge

» Decoupling interface and implementation
» Improved extensibility

» Hiding implementation details from clients

Builder

» Separate the construction of a complex object from its
representation so that the same construction process can
create different representations.

Builder

HTFHeader

ParseATF) &

buslder

TextConverier

wihila {1 = get the next token] |
gwitch L Typs |

CHAH:

bBuildar-=ComverlCharactes|{LChar)

FOMT:

Eatlcl g

FaRA:

Eatlcl g

T

sl oniChangell Fondi

sLomierFaragraphi)

CanverCharacierchar
ConvanrontChangs)Fomnt)
CanyartFargogram)

A

ASCIHConvertier

TeXConverter

TextWidgetConverber

CaomeerlCharacies| char)

GatASCITexi()

M ASCHText

Cromverilharactan] char)
ConverFontChangs(Font)
ComnverFaragranhi)

GetTeXTexi()

Caormeerbharacien| chaar)
ConmvertFontChangeiFont)
LaormperFaragraphi)

GetTexiWidgsi()

TeXText

M TextWidget

Builder Structure...

builder—=BuildPart{)
i

Director builder Builder
onstruch) 0 BuiidFart()
T
I
i £
for ali objects in structure { S

ConcreteBuilder

BuildPart{}
GetHesult()

Product

Builder

aClient

new ConcrateBuilder

aDirector

aConcreteBuilder

.

Construct() BuildPartA()
BuildPartB(}
BuildPartCy{)
(aefHesult() —|—

Builder Consequences

» It lets you vary a product's internal representation
» It isolates code for construction and representation

» It gives you finer control over the construction process

FlyWeight

» Use sharing to support large numbers of fine-grained
objects efficiently.

FlyWeight

.'-.-. -.H'.
eoe { (o)
Rt i

flyweight pool

Flyweight: Structure

FlyweightFactory

fiyweights
k>

GetFhyweight(key) T

...J Flyweight

OperationfextrinsicSiatal

jelse |

il (fhyweight[key] exists) {
refurm existing fhyweight,

create new fhyweight;
add it to pool of thrweights,
refum the new fiyweight;

T

Clhient

—i-

ConcreteFlyweight

Operation{extrinsicState)

intrinsicstate

—-

UnsharedConcreteFlyweight

Dperation{extrinsicSiate)

allstate

Flyweight example

n--l Glyph

Uraw(Contexd)
infersects{Foint, Context)

A

=~

How

childran

Drraw(Contaxt)
Intersacts{Point, Contaxt)

Character

Column

R

Draw|{Context)
Intersects{Point, Coniaxt)

Draw{Contaxt)
IntersactsiPoint, Context)

childran

char ¢

Flyweight: Instances

[;::Iiam '| ’f;:liant]

$ _/I 'x.. I-J/I

¥ ¥
. N
[/ aFlyweightFactory |/_ al:cml:releFEwmignl_\l [/_ at:::nr;relel-‘tz.rweighﬁl

l\fl'_-.-'-.-'.'Eii!]I'ﬁs L 4 . .'I\m[rirlﬁlc;El&!e /| ‘-| intrinsicSlate _/I

Flyweight: Applicabilité

» Etat intrinseque/extrinseque...

» Les états extrinseques peuvent étre calculés...

Flyweight

G2 DocumentElement

T
|
m— @ DocCharFactory
| | o myChar: MutableDocChar
— (i DocumentContainer o docCharPool: Hashtable
~parent | o children: Vector G DocChar - & getDocChar(in ¢: char): DocChar
o font: Font ya _|_

- o character: char
& parent: DocumentContainer

& DocChar(in ¢: char)

@ getChar(): char

@ hashCode(}: int

@ equals(in o: Object): boolean

getChild(in index: int): DocumentElement
addChild{in child: DocumentElement)
removeChild(in child: DocumentElement)
getParent(): DocumentContainer
getFont(): Font

setFont(in font: Font)

o @ @ @ o @

I I I ; I
I @ Document E I @ CharacterContext E { @ Paragraph E }ﬁLineDﬂext E 1| G Page !:

Iterator

» Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying
representation

Iterator

Aggregate

Lreatelterator)

ConcreteAggregate

Createlteraton) 9
|

fterator

Firstf}

Next)
IsDaref)
Currentitemny)

:

refurn new Gnﬂ:;melmr\amrﬂhm}a

Concretelterator

[terator example:

Glyph h"-
Drraw{ Window)

Intersects{Paint)
Insart{Giyph, int)

A

w—=DrawCharacten(c)

| | children
Character Rectangle Row
Drraw{Window w) ':""“: Drraw...) Draw(Window w) F-—=-=-=--—q--—--—-----
Intersects(Paoint p) § ! Intersectsi...) Intarsects(Poimnt p) L T !
:] Insert{Glyph g, nt 1) g I :
char ¢ | | ! ! |
. : o
1
! } Polygon ! ! !
1 1
' ! Diraw!._ 3 insert g into) i !
return true if point p = : awl...) children at position | |
intersects this character ! Inersects...) ! !
1 1 |
|
: for all & in childran he I
if c—=Intersects(p) return rue !
|
I
|

forall ¢ i children =

ensure ¢ is positionad
correctly,
c—=Draww)

(]

xemple

- fterator
First{)
Mexdi}
IsDane{)
Currentitanmy}
, Preorderiterator Arraylterator Listiterator Mulliterator
iterators
First() First(] First() First()
Mext() Baxi!) Mexti) Maxti)
lsDoned) - —] 1sBons() isDoned) - I=lone() D——'—:
Currentitami) Currentltem{) Currenilliemd) Currentltem) !
|
|

ot currentliem
refum true \

- Glyph FUE—

Createllaratorf) o-f--—--—- returm new Muliiterator \

Memento

» Without violating encapsulation, capture and externalize
an object's internal state so that the object can be
restored to this state later.

Memento Structure...

Originator

SetMemeantolMamento m)
CrealeMementof) ¢

Memento

glate

GelState)
SalStatel)

siate

i

refurn new Mementolstabe)

siate = m-=GetState()

aCaretaker

anQriginator

CreateMemento)

o]

naw Memento

Satstate()

MEMEento
s~ Caretaker
aMemento

SethementolaMementa)

GetState()

Memento...

<
<
<
<
<

Preserving encapsulation boundaries

It simplifies Originator

Using mementos might be expensive.
Defining narrow and wide interfaces

Hidden costs in caring for mementos

Patterns

relationships

Nementa | Proxy
MW?QSI‘E?E Adapter
Builder)\".um‘\‘a: -
Iterator “”“"'G’ Brid
"-._hﬂumg . ﬂy.sera's ge
COMDOSIRS ‘: \ \
wenimaating
uhifgre //3 "
adding —_— sl
e S\ |
// ta obfects
Decomlor shaning .
compastos - chainire chdining
| aparaton: sl mEfm""
"

Flyweight ramass T Visitor f
changing stin (
VAMSIE JULS

achdivg

sharinig - — opeaions | Chain of nﬂponaibil'rry‘
- SITRIBRES
/N
s ™ [eamar |
shalas, Mediater -*——1u1 J—

State
n’gun’ s
e,
Template Method crtEn uses
Prototype
- Factory Method

e fackyy
ayriermicany implgrmant using

Ahstract Factory
] Mmtrct Factory |
ST
ingtanes
: .
sinye -

I e
Singleton -

What to Expect from Design Patterns

» A Common Design Vocabulary

» A Documentation and Learning Aid
» An Adjunct to Existing Methods

» ATarget for Refactoring

