
Design patterns

Sources

 Cours de Pascal Molli « A

System of Pattern »

Bushmann et All

 « Design Patterns »

Gamma et All (GoF)

 « Applying UML and

Patterns » Larman

 "Design Patterns Java™

Workbook" Steven John

Metsker

Design for change

 You should avoid

 Creating an object by specifying a class explicitly.

 Dependence on specific operations.

 Dependence on object representations or implementations.

 Algorithmic dependencies.

 Tight coupling.

 Extending functionality by subclassing.

 Inability to alter classes conveniently

Patterns…

4

 « Patterns help you build on the collective experience of

skilled software engineers. »

 « They capture existing, well-proven experience in

software development and help to promote good design

practice »

 « Every pattern deals with a specific, recurring problem in

the design or implementation of a software system »

 « Patterns can be used to construct software

architectures with specific properties… »

Becoming a Chess Master

 First learn rules and

physical requirements

 Then learn principles

 However, to become a

master of chess, one must

study the games of other

masters

 There are hundreds of

these patterns

5

Becoming a Software Designer Master

 First learn the rules

 e.g., the algorithms, data structures and languages of software

 Then learn the principles

 e.g., structured programming, modular programming, object

oriented programming, generic programming, etc.

 However, to truly master software design, one must study

the designs of other masters

 These designs contain patterns must be understood,

memorized, and applied repeatedly

 There are hundreds of these patterns

6



What is a pattern ?

 A pattern addresses a recurring design problem that

arises in specific design situations, and presents a solution

to it.

 Patterns document existing, well-proven design

experience.

 Patterns identify and specify abstractions that are above

the level of single classes and instances, or of components

 Patterns provide a common vocabulary and

understanding for design principles

From POSA

What is a pattern

 Patterns are a means of documenting soffware

architectures.

 Patterns support the construction of software with

defined properties.

 Patterns help you build complex and heterogeneous

software architectures.

 Patterns help you to manage somare complexity.

What is a pattern (continued)

 A pattern for software architecture describes a particular

recurring design problem that arises in specific design

contexts, and presents a well-proven generic scheme for

its solution.

 The solution scheme is specified by describing its

constituent components, their responsibilities and

relationships, and the ways in which they collaborate.

Pattern constitution

Patterns categories

 Architectural patterns

 Design Patterns

 Idioms

Architectural Patterns

 An architectural Pattern

express a fundamental

structural organization

schema for software

systems.

 It provides a set of

predefined subsystems,

their responsibilities, and

includes rules and

guidelines for organizing

the relationships between

them.

P. Molli 12

Design patterns

 A design pattern provides

a scheme for refining the

subsystems or

components of a software

system, or the relation

ships between them.

 It describes a commonly-

recurring structure of

communicating

components that solves a

general design problem

within a particular

context.

P. Molli 13

Idioms

P. Molli 14

 An Idiom is a low-level pattern specific to a programming

language.

 An idiom describes how to implement particular aspects

of components or the relationships between them using

the features of the given language.

Pattern Description (1)

 Name The name and a short summary of the pattern.

 Also Known As Other names for the pattern, if any are known.

 Example A real-world example demonstrating the existence of the
problem and the need for the pattern. Throughout the description
we refer to the example to illustrate solution and implementation
aspects, where this is necessary or useful. Text that is specifically
about the example is marked by the r symbol at its beginning and by
the D symbol at its end.

 Context The situations in which the pattern may apply

 Problem The problem the pattern addresses, including a discussion
of its associated forces.

 Solution The fundamental solution principle underlying the pattern.

 Structure A detailed specification of the structural aspects of the
pattern, including CRC-cards

Pattern description (2)

 Dynamics Typical scenarios describing the run-time behavior of the
pattern.

 Implementation Guidelines for implementing the pattern.

 Example resolved Discussion of any important aspects for
resolving the example that are not yet covered in the Solution,
Structure, Dynamics and Implementation sections.

 Variants A brief description of variants or specializations of a
pattern.

 Known Uses Examples of the use of the pattern, taken from
existing systems.

 Consequences The benefits the pattern provides, and any potential
liabilities.

 See Also References to patterns that solve similar problems, and to
patterns that help us refine the pattern we are describing.

Pattern description (Gof)

 Name – Aliases

 Motivation

 Applicability

 Structure

 Participants

 Collaborations

 Consequences

How patterns solve problems

 Finding Appropriate Objects

 Determining Object Granularity

 Specifying Object Interfaces

 Specifying Object Implementations

 Class versus Interface Inheritance

 Programming to an Interface, not an Implementation

 Putting Reuse Mechanisms to Work

 Inheritance versus Composition

 Favor object composition over class inheritance.

 Delegation

How patterns solve problems (2)

 Example of delegation

 The window delegates to the rectangle its behavior

Relating Run-Time and Compile-Time

Structures

 acquaintance relationship

 A class that refers to another class has an acquaintance with

that class.

 aggregation relationship

 The relationship of an aggregate object to its parts. A class

defines this relationship for its instances (e.g., aggregate

objects).

 No difference in programming languages

Common Patterns

 Abstract Factory

 Adapter

 Composite

 Decorator

 Factory Method

 Observer

 Strategy

 Template Method

Adapter

 Convert the interface of a class into another interface

clients expect.

 Adapter lets classes work together that couldn't

otherwise because of incompatible interfaces.

Motivation

Applicability

 Use the Adapter pattern when

 you want to use an existing class, and its interface does not

match the one you need.

 you want to create a reusable class that cooperates with

unrelated or unforeseen classes, that is, classes that don't

necessarily have compatible interfaces.

 (object adapter only) you need to use several existing

subclasses, but it's impractical to adapt their interface by

subclassing every one. An object adapter can adapt the

interface of its parent class.

Structure

Participants

 Target (Shape)

 defines the domain-specific interface that Client uses.

 Client (DrawingEditor)

 collaborates with objects conforming to the Target interface.

 Adaptee (TextView)

 defines an existing interface that needs adapting.

 Adapter (TextShape)

 adapts the interface of Adaptee to the Target interface.

Collaborations

 Clients call operations on an Adapter instance.

 In turn, the adapter calls Adaptee operations that carry

out the request.

Consequences

 A class adapter

 adapts Adaptee to Target by committing to a concrete Adapter class.
As a consequence, a class adapter won't work when we want to
adapt a class and all its subclasses.

 lets Adapter override some of Adaptee's behavior, since Adapter is a
subclass of Adaptee.

 introduces only one object, and no additional pointer indirection is
needed to get to the adaptee.

 An object adapter

 lets a single Adapter work with many Adaptees—that is, the Adaptee
itself and all of its subclasses (if any). The Adapter can also add
functionality to all Adaptees at once.

 makes it harder to override Adaptee behavior. It will require
subclassing Adaptee and making Adapter refer to the subclass rather
than the Adaptee itself.

Decorator

 Attach additional

responsibilities to an

object dynamically.

 Decorators provide a

flexible alternative to

subclassing for extending

functionality.

Motivation

Applicability

 Use Decorator

 to add responsibilities to individual objects dynamically and

transparently, that is, without affecting other objects.

 for responsibilities that can be withdrawn.

 when extension by subclassing is impractical. Sometimes a large

number of independent extensions are possible and would

produce an explosion of subclasses to support every

combination. Or a class definitionmay be hidden or otherwise

unavailable for subclassing.

Structure

Participants

 Component (VisualComponent)

 defines the interface for objects that can have responsibilities

added to them dynamically.

 ConcreteComponent (TextView)

 defines an object to which additional responsibilities can be

attached.

 Decorator

 maintains a reference to a Component object and defines an

interface that conforms to Component's interface.

 ConcreteDecorator (BorderDecorator, ScrollDecorator)

 adds responsibilities to the component.

Collaborations

 Decorator forwards requests to its Component object. It

may optionally perform additional operations before and

after forwarding the request.

Consequences

 Decorator Pattern

 More flexibility than static inheritance.

 Avoids feature-laden classes high up in the hierarchy.

 A decorator and its component aren't identical.

 Lots of little objects.

Composite

 Compose objects into tree structures to represent part-

whole hierarchies. Composite lets clients treat individual

objects and compositions of objects uniformly.

CC BY-NC-SA 2.0 http://www.flickr.com/photos/dunechaser/

Motivation

Applicability

 Use the Composite pattern when

 you want to represent part-whole hierarchies of objects.

 you want clients to be able to ignore the difference between

compositions of objects and individual objects.

 Clients will treat all objects in the composite structure

uniformly.

GoF

Structure

Participants
 Component (Graphic)

 declares the interface for objects in the composition.

 implements default behavior for the interface common to all classes, as
appropriate.

 declares an interface for accessing and managing its child components.

 (optional) defines an interface for accessing a component's parent in the
recursive structure, and implements it if that's appropriate.

 Leaf (Rectangle, Line, Text, etc.)
 represents leaf objects in the composition. A leaf has no children.

 defines behavior for primitive objects in the composition.

 Composite (Picture)
 defines behavior for components having children.

 stores child components.

 implements child-related operations in the Component interface.

 Client
 manipulates objects in the composition through the Component interface.

Collaborations

 Clients use the Component class interface to interact

with objects in the composite structure.

 If the recipient is a Leaf, then the request is handled

directly.

 If the recipient is a Composite, then it usually forwards

requests to its child components, possibly performing

additional operations before and/or after forwarding.

Consequences

 The Composite pattern

 defines class hierarchies consisting of primitive objects and

composite objects.

 makes the client simple. Clients can treat composite structures

and individual objects uniformly.

 makes it easier to add new kinds of components. Newly

defined Composite or Leaf subclasses work automatically with

existing structures and client code. Clients don't have to be

changed for new Component classes.

 can make your design overly general. The disadvantage of

making it easy to add new components is that it makes it

harder to restrict the components of a composite.

Abstract Factory (Kit)

 Provide an interface for creating families of related or

dependent objects without specifying their concrete

classes.

Motivation

Applicability

 Use the Abstract Factory pattern when

 a system should be independent of how its products are

created, composed, and represented.

 a system should be configured with one of multiple families of

products.

 a family of related product objects is designed to be used

together, and you need to enforce this

constraint.

 you want to provide a class library of products, and you want

to reveal just their interfaces, not

their implementations.

GoF

Structure

Participants

 AbstractFactory (WidgetFactory)
 declares an interface for operations that create abstract product

objects.

 ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)
 implements the operations to create concrete product objects.

 AbstractProduct (Window, ScrollBar)
 declares an interface for a type of product object.

 ConcreteProduct (MotifWindow, MotifScrollBar)
 defines a product object to be created by the corresponding

concrete factory.

 implements the AbstractProduct interface.

 Client
 uses only interfaces declared by AbstractFactory and

AbstractProduct classes.

Collaborations

 Normally a single instance of a ConcreteFactory class is

created at run-time. This concrete factory creates

product objects having a particular implementation. To

create different product objects, clients should use a

different concrete factory.

 AbstractFactory defers creation of product objects to its

ConcreteFactory subclass.

Consequences

 It isolates concrete classes.

 It makes exchanging product families easy.

 It promotes consistency among products.

 Supporting new kinds of products is difficult.

Factory Method (Virtual Constructor)

 Define an interface for creating an object, but let

subclasses decide which class to instantiate. Factory

Method lets a class defer instantiation to subclasses.

Motivation

Applicability

 Use the Factory Method pattern when

 a class can't anticipate the class of objects it must create.

 a class wants its subclasses to specify the objects it creates.

 classes delegate responsibility to one of several helper

subclasses, and you want to localize the knowledge of which

helper subclass is the delegate.

GoF

Structure

Participants

 Product (Document)

 defines the interface of objects the factory method creates.

 ConcreteProduct (MyDocument)

 implements the Product interface.

 Creator (Application)

 declares the factory method, which returns an object of type
Product. Creator may also define a default implementation of
the factory method that returns a default ConcreteProduct
object.

 may call the factory method to create a Product object.

 ConcreteCreator (MyApplication)

 overrides the factory method to return an instance of a
ConcreteProduct.

Collaborations

 Creator relies on its subclasses to define the factory

method so that it returns an instance of the appropriate

ConcreteProduct.

Consequences

 Provides Hook for subclasses.

 Connect parallel class hierarchies.

Observer

 Define a one-to-many dependency between objects so

that when one object changes state, all its dependents are

notified and updated automatically.

Motivation

Applicability

 Use the Observer pattern in any of the following

situations:

 When an abstraction has two aspects, one dependent on the

other. Encapsulating these aspects in separate objects lets you

vary and reuse them independently.

 When a change to one object requires changing others,

and you don't know how many objects need to be

changed.

 When an object should be able to notify other objects

without making assumptions about who these objects are.

In other words, you don't want these objects tightly

coupled.
GoF

Structure

Participants

 Subject
 knows its observers. Any number of Observer objects may observe a

subject.

 provides an interface for attaching and detaching Observer objects.

 Observer
 defines an updating interface for objects that should be notified of

changes in a subject.

 ConcreteSubject
 stores state of interest to ConcreteObserver objects.

 sends a notification to its observers when its state changes.

 ConcreteObserver
 maintains a reference to a ConcreteSubject object.

 stores state that should stay consistent with the subject's.

 implements the Observer updating interface to keep its state
consistent with the subject's.

Collaborations

 ConcreteSubject notifies its observers whenever a change

occurs that could make its observers' state inconsistent

with its own.

 After being informed of a change in the concrete subject,

a ConcreteObserver object may query the subject for

information. ConcreteObserver uses this information to

reconcile its state with that of the subject.

Collaborations

Consequences

 Abstract coupling between Subject and Observer.

 Support for broadcast communication.

 Unexpected updates.

Strategy

 Define a family of algorithms, encapsulate each one, and

make them interchangeable.

 Strategy lets the algorithm vary independently from

clients that use it.

Motivation

Applicability

 Use the Strategy pattern when

 many related classes differ only in their behavior. Strategies
provide a way to configure a class with one of many behaviors.

 you need different variants of an algorithm. For example, you
might define algorithms reflecting different space/time trade-
offs. Strategies can be used when these variants are
implemented as a class hierarchy of algorithms [HO87].

 an algorithm uses data that clients shouldn't know about. Use
the Strategy pattern to avoid exposing complex, algorithm-
specific data structures.

 a class defines many behaviors, and these appear as multiple
conditional statements in its operations. Instead of many
conditionals, move related conditional branches into their own
Strategy class.

 GoF

Structure

Participants

 Strategy (Compositor)

 declares an interface common to all supported algorithms.

Context uses this interface to call the algorithm defined by a

ConcreteStrategy.

 ConcreteStrategy (SimpleCompositor, TeXCompositor,

ArrayCompositor)

 implements the algorithm using the Strategy interface.

 Context (Composition)

 is configured with a ConcreteStrategy object.

 maintains a reference to a Strategy object.

 may define an interface that lets Strategy access its data.

Collaborations

 Strategy and Context interact to implement the chosen

algorithm. A context may pass all data required by the

algorithm to the strategy when the algorithm is called.

Alternatively, the context can pass itself as an argument to

Strategy operations. That lets the strategy call back on the

context as required.

 A context forwards requests from its clients to its

strategy. Clients usually create and pass a

ConcreteStrategy object to the context; thereafter, clients

interact with the context exclusively.There is often a

family of ConcreteStrategy classes for a client to choose

from.

Consequences

 Families of related algorithms.

 An alternative to subclassing.

 Strategies eliminate conditional statements.

 A choice of implementations.

 Clients must be aware of different Strategies.

 Communication overhead between Strategy and Context.

 Increased number of objects.

Template Method

 Define the skeleton of an algorithm in an operation,

deferring some steps to subclasses.

 Template Method lets subclasses redefine certain steps of

an algorithm without changing the algorithm's structure.

Motivation

Applicability

 The Template Method pattern should be used

 to implement the invariant parts of an algorithm once and leave it up

to subclasses to implement the behavior that can vary.

 when common behavior among subclasses should be factored and

localized in a common class to avoid code duplication. This is a good

example of "refactoring to generalize" as described by Opdyke and

Johnson [OJ93]. You first identify the differences in the existing code

and then separate the differences into new operations. Finally, you

replace the differing code with a template method that calls one of

these new operations.

 to control subclasses extensions. You can define a template method

that calls "hook" operations (see Consequences) at specific points,

thereby permitting extensions only at those points.

GoF

Structure

Participants

 AbstractClass (Application)

 defines abstract primitive operations that concrete subclasses

define to implement steps of an algorithm.

 implements a template method defining the skeleton of an

algorithm. The template method calls primitive operations as

well as operations defined in AbstractClass or those of other

objects.

 ConcreteClass (MyApplication)

 implements the primitive operations to carry out subclass-

specific steps of the algorithm.

Collaborations

 ConcreteClass relies on AbstractClass to implement the

invariant steps of the algorithm.

Consequences

 Template methods lead to an inverted control structure that's

sometimes referred to as "the Hollywood principle," that is,

"Don't call us, we'll call you" [Swe85]. This refers to how a

parent class calls the operations of a subclass and not the

other way around.

 It's important for template methods to specify which

operations are hooks (may be overridden) and which are

abstract operations (must be overridden). To reuse an abstract

class effectively, subclass writers must understand which

operations are designed for overriding.

How to select a design pattern

 Consider how design patterns solve design problems.

 Scan Intent sections.

 Study how patterns interrelate.

Patterns organisation

 Creational patterns

 Structural patterns

 Behavioral patterns

Creational patterns

 Abstract Factory

 families of product objects

 Builder

 how a composite object gets created

 Factory Method

 subclass of object that is instantiated

 Prototype

 class of object that is instantiated

 Singleton

 the sole instance of a class

Structural patterns

 Adapter
 interface to an object

 Bridge
 implementation of an object

 Composite
 structure and composition of an object

 Decorator
 responsibilities of an object without subclassing

 Facade
 interface to a subsystem

 Flyweight
 storage costs of objects

 Proxy
 how an object is accessed; its location

Behavioral patterns

 Chain of Responsibility

 object that can fulfill a request

 Command

 when and how a request is fulfilled

 Interpreter

 grammar and interpretation of a language

 Iterator

 how an aggregate's elements are accessed, traversed

 Mediator

 how and which objects interact with each other

 Memento

 what private information is stored outside an object, and when

Behavioral patterns

 Observer

 number of objects that depend on another object; how the
dependent objects stay up to date

 State

 states of an object

 Strategy

 an algorithm

 Template Method

 steps of an algorithm

 Visitor

 operations that can be applied to object(s) without changing
their class(es)

Proxy

 Provide a surrogate or placeholder for another object to

control access to it.

Motivation

Applicability

 A remote proxy provides a local representative for an

object in a different address space.

 A virtual proxy creates expensive objects on demand.

The ImageProxy described in the Motivation is an

example of such a proxy.

 A protection proxy controls access to the original object.

 A smart reference is a replacement for a bare pointer

that performs additional actions when an object is

accessed

GoF

Structure

Participants

 Proxy (ImageProxy)

 maintains a reference that lets the proxy access the real

subject. Proxy may refer to a Subject if the RealSubject and

Subject interfaces are the same.

 Subject (Graphic)

 defines the common interface for RealSubject and Proxy so

that a Proxy can be used anywhere a RealSubject is expected.

 RealSubject (Image)

 defines the real object that the proxy represents.

Collaborations

 Proxy forwards requests to RealSubject when

appropriate, depending on the kind of proxy.

Consequences

 The Proxy pattern introduces a level of indirection when

accessing an object. The additional indirection has many uses,

depending on the kind of proxy:

 1. A remote proxy can hide the fact that an object resides in a

different address space.

 2. A virtual proxy can perform optimizations such as creating an

object on demand.

 3. Both protection proxies and smart references allow additional

housekeeping tasks when an object is accessed.

Command

 Encapsulate a request as an object, thereby letting you

parameterize clients with different requests, queue or log

requests, and support undoable operations.

Motivation

Motivation (2)

Applicability

 Use the Command pattern when you want to

 parameterize objects by an action to perform, as MenuItem

objects did above.

 specify, queue, and execute requests at different times.

 support undo. The Command's Execute operation can store

state for reversing its effects in the command

 support logging changes so that they can be reapplied in case

of a system crash.

 structure a system around high-level operations built on

primitives operations. Such a structure is common in

information systems that support transactions.

GoF

Structure

Participants

 Command

 declares an interface for executing an operation.

 ConcreteCommand (PasteCommand, OpenCommand)

 defines a binding between a Receiver object and an action.

 implements Execute by invoking the corresponding operation(s) on
Receiver.

 Client (Application)

 creates a ConcreteCommand object and sets its receiver.

 Invoker (MenuItem)

 asks the command to carry out the request.

 Receiver (Document, Application)

 knows how to perform the operations associated with carrying out
a request. Any class may serve as a Receiver.

Collaborations

 The client creates a ConcreteCommand object and

specifies its receiver.

 An Invoker object stores the ConcreteCommand object.

 The invoker issues a request by calling Execute on the

command. When commands are undoable,

 ConcreteCommand stores state for undoing the

command prior to invoking Execute.

 The ConcreteCommand object invokes operations on its

receiver to carry out the request.

Collaborations

Consequences

 Command decouples the object that invokes the operation

from the one that knows how to perform it.

 Commands are first-class objects. They can be manipulated and

extended like any other object.

 You can assemble commands into a composite command. An

example is the MacroCommand class described earlier.

 It's easy to add new Commands, because you don't have to

change existing classes.

State

 Allow an object to alter its behavior when its internal

state changes. The object will appear to change its class.

Motivation

Applicability

 Use the State pattern in either of the following cases:

 An object's behavior depends on its state, and it must change

its behavior at run-time depending on that state.

 Operations have large, multipart conditional statements that

depend on the object's state.

GoF

Structure

Participants

 Context (TCPConnection)

 defines the interface of interest to clients.

 maintains an instance of a ConcreteState subclass that defines

the current state.

 State (TCPState)

 defines an interface for encapsulating the behavior associated

with a particular state of the Context.

 ConcreteState subclasses (TCPEstablished, TCPListen,

TCPClosed)

 each subclass implements a behavior associated with a state of

the Context.

Collaborations

 Context delegates state-specific requests to the current

ConcreteState object.

 A context may pass itself as an argument to the State object

handling the request. This lets the State object access the

context if necessary.

 Context is the primary interface for clients. Clients can

configure a context with State objects. Once a context is

configured, its clients don't have to deal with the State objects

directly.

 Either Context or the ConcreteState subclasses can decide

which state succeeds another and under what circumstances.

Consequences

 It localizes state-specific behavior and partitions behavior for

different states.

 It makes state transitions explicit.

 State objects can be shared.

Visitor

 Represent an operation to be performed on the elements

of an object structure.

 Visitor lets you define a new operation without changing

the classes of the elements on which it operates.

Motivation

Applicability

 Use the Visitor pattern when

 an object structure contains many classes of objects with

differing interfaces, and you want to perform operations on

these objects that depend on their concrete classes.

 many distinct and unrelated operations need to be performed

on objects in an object structure, and you want to avoid

"polluting" their classes with these operations.

 the classes defining the object structure rarely change, but you

often want to define new operations over the structure.

Changing the object structure classes requires redefining the

interface to all visitors, which is potentially costly. If the object

structure classes change often, then it's probably better to

define the operations in those classes.

GoF

Structure

Participants
 Visitor (NodeVisitor)

 declares a Visit operation for each class of ConcreteElement in the object structure. The
operation's name and signature identifies the class that sends the Visit request to the
visitor. That lets the visitor determine the concrete class of the element being visited. Then
the visitor can access the element directly through its particular interface.

 ConcreteVisitor (TypeCheckingVisitor)

 implements each operation declared by Visitor. Each operation implements a fragment of
the algorithm defined for the corresponding class of object in the structure.
ConcreteVisitor provides the context for the algorithm and stores its local state. This state
often accumulates results during the traversal of the structure.

 Element (Node)

 defines an Accept operation that takes a visitor as an argument.

 ConcreteElement (AssignmentNode,VariableRefNode)

 implements an Accept operation that takes a visitor as an argument.

 ObjectStructure (Program)

 can enumerate its elements.

 may provide a high-level interface to allow the visitor to visit its elements.

 may either be a composite or a collection such as a list or a set.

Collaborations

 A client that uses the Visitor pattern must create a

ConcreteVisitor object and then traverse the object structure,

visiting each element with the visitor.

 When an element is visited, it calls the Visitor operation that

corresponds to its class. The element supplies itself as an

argument to this operation to let the visitor access its state, if

necessary.

Consequences

 Visitor makes adding new operations easy.

 A visitor gathers related operations and separates unrelated

ones.

 Adding new ConcreteElement classes is hard.

 Visiting across class hierarchies.

 Accumulating state.

 Breaking encapsulation.

Chain of responsability

 Avoid coupling the sender

of a request to its receiver

by giving more than one

object a chance to handle

the request.

 Chain the receiving

objects and pass the

request along the chain

until an object handles it.

P. Molli 115

 Motivation

116

Motivation

P. Molli 117

Structure

P. Molli 118

Participants

P. Molli 119

 Handler (HelpHandler)

 defines an interface for handling requests.

 (optional) implements the successor link.

 ConcreteHandler (PrintButton, PrintDialog)

 handles requests it is responsible for.

 can access its successor.

 if the ConcreteHandler can handle the request, it does so;

otherwise it forwards the request to its successor.

 Client

 initiates the request to a ConcreteHandler object on the chain.

Example…

 Awt 1.0

Strategy

121

 Define a family of algorithms, encapsulate each one, and

make them interchangeable. Strategy lets the algorithm

vary independently from clients that use it.

Motivation

P. Molli 122

Strategy

P. Molli 123

Participants

P. Molli 124

 Strategy (Compositor)

 declares an interface common to all supported algorithms.

Context uses this interface to call the algorithm defined by a

ConcreteStrategy.

 ConcreteStrategy (SimpleCompositor, TeXCompositor,

ArrayCompositor)

 implements the algorithm using the Strategy interface.

 Context (Composition)

 is configured with a ConcreteStrategy object.

 maintains a reference to a Strategy object.

 may define an interface that lets Strategy access its data.

Strategy…

Button
(from awt)

BorderLayout
(from awt)

Component
(from awt)

GridLayout
(from awt)

LayoutManager2
(from awt)

<<Interface>>

Container
(from awt)

component[]

LayoutManager
(from awt)

<<Interface>>layoutMgr

Bridge

 Decouple an abstraction from its implementation so that

the two can vary independently.

Bridge

Bridge

Bridge Structure…

Bridge

 Decoupling interface and implementation

 Improved extensibility

 Hiding implementation details from clients

Builder

 Separate the construction of a complex object from its

representation so that the same construction process can

create different representations.

Builder

Builder Structure…

Builder

Builder Consequences

 It lets you vary a product's internal representation

 It isolates code for construction and representation

 It gives you finer control over the construction process

FlyWeight

 Use sharing to support large numbers of fine-grained

objects efficiently.

FlyWeight

Flyweight: Structure

Flyweight example

Flyweight: Instances

Flyweight: Applicabilité

 Etat intrinsèque/extrinsèque…

 Les états extrinsèques peuvent être calculés…

Flyweight

Iterator

 Provide a way to access the elements of an aggregate

object sequentially without exposing its underlying

representation

Iterator

Iterator example:

Exemple

Memento

 Without violating encapsulation, capture and externalize

an object's internal state so that the object can be

restored to this state later.

Memento Structure…

Memento…

 Preserving encapsulation boundaries

 It simplifies Originator

 Using mementos might be expensive.

 Defining narrow and wide interfaces

 Hidden costs in caring for mementos

Patterns relationships

What to Expect from Design Patterns

 A Common Design Vocabulary

 A Documentation and Learning Aid

 An Adjunct to Existing Methods

 A Target for Refactoring

