CONCEPTION OBJET
GRASP PATTERNS

I General Responsibility Assignment Software Patterns

Grasp Patterns

.f ¥ Third Ediion

7 APPLYING UML

O Recognize that according to
Craig Larman: AND PATTERNS
1. “The skillful assignment of e

responsibilities is extremely
important in object design,

2. Determining the assignment of
responsibilities often occurs
during the creation of
interaction diagrams and
certainly during programming.”

PEARSON

Resources
- r - - -

0 www.unf.edu/~
broggio/cen6017/38.DesignPatters-Part2.
ppt

0 www.academic.marist.edu/~jzbv/.../
DesignPatterns/GRASP.pp

D EER

http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp

Grasp Patterns

I
0 During Object Design
* Make choice about the assignment of
responsibilities to software classes

Responsibility

Sale
T
[
[
[
[
|
makePayment(cashTendered) o
> create(cashTendered) » - Payment

implies Sale objects have a
responsibility to create Payments

Expert Pattern

N
0 Sale example

0 Who is responsible for knowing the total
of the sale 7

0 Who has the information to determine
the total

(Information) Expert Pattern

!
Look in the Domain Model

Domain Model : conceptual classes
Design Model : software classes
0 So

* Choose a domain model class

* Create a new class based on Domain Model
class

I I B

Expert Pattern - Using Domain Model

N
O There is a Sale Sale
date

class in the date
domain model 1

Contains
Product
SalesLineltem Specification
1
quantity Described by de.scrlpuon
price
itemID

AdQa >ale Lilass to the aesign

model
N I —
0 Add the —
responsibility of due
knowing its total Newmethod 1] |yl

* Method getTotal()

t := getTotal()

: Sale

And then

OWhat information is needed to determine
the line item subtotals?

OWe need: SalesLineltem.quantity and ..

date

O ProductSpecification.price —=

getTotal()

t := getTotal() 1 *: st := getSubtotal()

: Sale

:SalesLineltem

\ quantity
getSubtotal()

NOW the domain modaeil IS
used

e
0 And we need to know the product price

0 The design class must include a method
getPrice()

0 The design classes show how entities are
used

Finally
et S
0 Responsabilities —
are placed with
the object that e
had the
iInformation®? | .. | receswon [g
needed to fulfill'it L1 o= e spestinton

getSubtotal()

description
price

: Product itemlD
Specification getPrice()

Design Model considerations

e
0 Often requires spanning several classes
0 Collaboration between partial
iInformation experts

O these “information experts” do
things relative to the information
they ‘know.’

Be careful

N
0 Who should be responsible for saving
Sale in the database ?

0 Each entity cannot be responsible for
that

O Problem of
* Cohesion and coupling
* Reuse and duplication

Cohesion and Coupling

I
0 SQL/JDBC Code in the Sale Class

O It is not anymore only a sale (decreased
cohesion)

0 This is a new responsibility (saving itself)
0 (Separate I/0 from data manipulation)

Cohesion and coupling

N
0 Coupling Sale with the database service

0 Sale belong to the domain layer
* Coupled to other domain objects

O Difficult to change the storage service

Final : be careful

N
0 Keep application logic in one place

0 Keep database logic in another place

0 Separation of concern is good for
cohesion and coupling

Benefits of expert

e
O Maintain encapsulation

0 Supports low coupling

O Behavior distributed accross classes that
have the required information

0 High cohesion, Better reuse

Creator Pattern

!
0 Who Is responsible for creating new
Instances of some classes

Solution
T
0 Assign class B the responsibility to create an instance of

class A if one or more of the following is true:
*B aggregates A (simple aggregate; shared attributes)
* B contains A (composition; non-shared attributes)
* B records instances of A objects
* B closely uses A objects
* B has the initializing data that will be passed to A when it is
created (thus B is an Expert with respect to creating A)

e.g. queue collection class; queue driver class; stack .

O If more than one option applies, prefer a class B whlch
aggregates or contains class A.

Creator

e
O Creation of objects is very common

‘We have a State class and we create
Instances of State objects, or

‘We have a CD class, and we create instances
(an array?) of CD objects....

OCreator results in low coupling, increased
clarity, encapsulation and reusability

Creator Example
I
O Who iIs Sale

date

responsible for e

getTotal()

creating :

SalesLineltem s
Product
SalesLineltem Specification
#
. 1
quantity Described by description
price
getSubtotal() itemID
getPrice()

Sdleé aggregates
SalesLineltems

0 Sale Is a good 0 Seems very
candidate to have obvious
the responsibility
of creating

SalesLineltems

The sequence diagram helps

makeLineltem(quantity) -~ :

create (quantity) »| :SalesLineltem

Benefits
I T
0 Creator connected O Creator is a kind
to the created object of expert

O Creator has the
initializing data
needed for the
creation

O Cf Larman book

Creator Pattern

N
0 Sometimes it is O The Factory
better to delegate pattern
creation to a
helper Class

Low Coupling

0 Assign a responsibility to
keep the coupling low

0 Support low dependency,
low change impact and
Increased use

0 High coupling is not
desirable

* Hard to change,
understand, reuse

Example

e
0 Register is coupled to payment

—
makePayment()

. Register 1: create() b : Payment

2: addP t
a ayment(p) — Sale

Alternative

e
0 Payment known from Sale. Sale has to
know Payment

—- —=

makePayment() . Register 1. makePayment()

1.1. create()

Payment

Common form of coupling
I

0 TypeX has an attribute that refers to
TypeY

0 TypeX instance call a service on a TypeY
Instance

O TypeX has a method that references an
Instance of TypeY (parameter, local
variable)

O TvpeX is a subclass of TvpbeY

High Cohesion

N
0 Assign responsibility to keep cohesion
high
0 Measure of the relation between an
element responsibilities
O Low cohesion mean
* Hard to comprehend, reuse and maintain

Example

I
0 Register creates payment

. Register s Sale

[
|
makePayment() ._L

create() »

p : Payment

t

addPayment(p)

Same alternative
e

0 Register has less responsibilities - Higher
co

. Register : Sale

| |
| |

makePayment() Ir—l— |
|

|

makePayment()

E create() P . Payment

Scenarios (Booch94)

Low cohesion—A class has sole responsibility for a complex task in one func
tional area.

o Assume a class exists called RDBInterface which 1s completely
responsible for interacting with relational databases. The methods
of the class are all related. but there are lots of them. and a tre-
mendous amount of supporting code; there may be hundreds or
thousands of methods. The class should split mnto a family of light-
weight classes sharing the work to provide RDB access.

High cohesion—A class has moderate responsibilities in one functional area
and collaborates with other classes to fulfill tasks.

o Assume a class exists called RDBInterface which 1s only partially
responsible for interacting with relational databases. It interacts

with a dozen other classes related to RDB access 1n order to
retrieve and save objects.

Controller

N
0 Assign the responsibility for handling
event message

* Facade Controller
* Use Case or Session controler

O This Is not a Ul class

0 Who Is responsible for handling input
system event

: Cashier

i actionPerformed(actionEvent)

Which class of object should be responsible for receiving this

Interface :SaleJFrame
Layer
.| system event message H
| | enterltem(itemiD, qty) ©
Domain < system event message?
Layer T o

v

It is sometimes called the controller or coordinator. It does not

| normally do the work, but delegates it to other objects.

The controller is a kind of "facade” onto the domain layer from
the interface layer.

Two possibilities
___1

—
enterltem(id, quantity)

:Register

—

enteritem(id. quantity) .ProcessSaleHandler

The controller delegates

N
0 |t does not do the work by itself

O |t coordinates/controls the activity

Allocation of operations

System

endSale()
enteritem()
makeNewSale()
makePayment()

makeNewRetum()
enterReturnltem()

Register

endSale()
enterltem()
makeMNewSale()
makePayment()

makeNewReturn()
enterRetumlitem()

System

endSale()
enterltem()
makeNewSale()
makePayment()

enterReturnltem()
makeNewRetumn()

ProcessSale HandleRetumns
Handler Handler
endSale() enterReturnitem()
enterltem() makeNewReturn()
makeNewSale()
makePayment()

system operations
discovered durnng system
behavior analysis

allocation of system
operations during design,

using one facade controller

allocation of system
operations during design,
using several use case
controllers

Issues
e

O Avoid bloated controllers (low cohesion)
* Add more controllers

* The controller delegates the responsibility
to fulfill operation on to other objects.

Two couples

nemin | ren i |

e [e——
Cuianty |
presses button
presses button ————— =3 umeken | At |
—————— [Enber Bem | ‘ Andsoon... l
Cashier
~Cashier
actionPerformed(actionEvent)
actionPerformed(actionEvent) L
It is undesirable for an interface
i layer object such as a window to get
Interface Layer ‘SaleJFrame involved in deciding how to handle
system event message ﬁ domain processes.
Interface Layer SaleJFrame) o)
N Business logic is embedded in the
oot presentation layer, which is not useful.
1:enter|tem(itemID,qty3 o’ e
e .
ST .-+ { controller tl Domain Layer 1 makelineltem(itemID, qty)]
ottt L _D

send this message.

— - -
Domain Layer ‘Regi 1.1: makeLineltem(itemID, gty) -Sale SaleJFrame should not 7

Creating a Sale

by Creator
and
Controller

. .
. .
. .

. .

makeNewSale()

.
L

:Register o . N

Register creates a
Sale by Creator

create

A

by Creator, Sale
creates an empty
multiobject (such as
a List) which will
eventually hold
SalesLineltem
instances

create

CAUTION:

this activation is implied to be within the
constructor of the Sale instance

This isnot a SalesLineltem instance. This is
collection object (such as a List) that can hol
SalesLineitem objects.

Enter an Iltem to the Sale

. et

" O. - -
o) D..° °
enterltem(id, qty) —» 2: makeLineltem(spec, gty

o
1: spec = getSpecification(id)l

o 2.1: create(spec, qty)

by Expert :.‘..0 %

sl: Saleslineltem

1.1: spec ::find(id)¢
Re

22 add{sl)io- .

This find message is to the —— -
Map object (the multiobject), |° -Product -Saleslineltem add the newly created
not to a ProductSpecification. Specification SalesLineltem instance to the
multiobject (e.g., List)
o a,
CAUTION: CAUTION-

This is a multiobject collection (such as a Map), not
ProductSpecification. It may contain many
ProductSpecifications.

This is a multiobject collection (such as a List), not a
SalesLineltem. It may contain many SalesLineltems.

Making payment
I

note that the Sale instance is named
's' so that it can be referenced as a
parameter in messages 2 and 2.1

.
’.

-
—

makePayment{cashT enderech— ‘Register 1: makePayment(cashTendered) s :Sale
2: addSale(s) L 1.1: create(cashTendered)
e J’

by Expert 5 :Payment
s
:Store
2.1: add(s) L

|
completedSales: Sale J

INnit

lalisation

create() —»

by Creator ‘..

pass a reference to the
ProductCatalog to the

Reqgister, so that it has
permanent visibility to it

.
.
.

o

2. create(pc)—»

Lol

.
.t

* .

©
1: create()

pc:

1.2.2*: add(ps) —

o

1.1: create() —»

create an empty multiobject (e.g., a
Map), not a ProductSpecification

ProductCatalog

1.2: IoadF'rodSplcs()

-Product J

1.2.1*: create(id, price, description)

the * in sequence number
indicates the message occurs in
a repeating section

ps:
ProductSpecification

Remember

O Low Coupling/High Cohes
0 Expert |
O Creator

0 Controller

o Not exactly patterns but strong
guidelines.

More patterns (or principles)

N
0 Polymorphism

O Indirection
O Pure Fabrication
O Protected Variation

Polymorphism
I
0 When behavior vary by type assign the
responsibility to the type for which the type
vary.
* Corollary: Do not test for the type of an object
and use conditional logic to perform varying
alternatives based on type.
O How to create pluggable component ? How to
handle alternatives based on types ?

EXample : MUultiple taX

calculator
.

«interface»
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineltems

A ~

/
~ I ~
~ ~
~ I N
~ N
-~ I
- ~
TaxMasterAdapter GoodAsGoldTaxPro <??77>Adapter
Adapter

getTaxes(Sale) : List of TaxLineltems

getTaxes(Sale) : List of TaxLineltems

By Polymorphism, multiple tax calculator adapters have
their own similar, but varying behavior for adapting to
different external tax calculators.

Final

I
O Very easy to extend and add variations

0 New implementations can be added with
affecting the client

O Do it only if there are known variations
(no future proofing)

Pure Fabrication

e
0 A class to save cohesion and coupling - a
creation of imagination

PersistentStorage

By Pure Fabrication ﬂ ---------- O

insert(Object)
update(Object)

Indirection
e

0 Assign the responsibility to an
iIntermediate object to mediate between
component or services so that they are
not directly coupled

0 How to decouple objects to increase
reuse.

Example : an adapter
I

5 . Sale - TaxMasterAdapter

t .= getTotal() I I TCP socket
communication

XX
? > usystems
'

taxes ;= getTaxes(s)

e g

- TaxMaste

e o
frea, .
L .
-
..,
L I

at
.

the adapter acts as a lev
of indirection to external
systems

Finally

I
0 Reduce coupling

O Protect from variations

O Indirections are often Pure Fabrication
* PersistenceStorage

Protected Variation

N
0 |dentify points of predicted variation and
instability. Assign responsibilities to
Create a stable interface around them

	Conception OBJET GRASP Patterns
	Grasp Patterns
	Resources
	Grasp Patterns
	Responsibility
	Expert Pattern
	(Information) Expert Pattern
	Expert Pattern – Using Domain Model
	Add Sale Class to the design model
	And then
	How the domain model is used
	Finally
	Design Model considerations
	Be careful
	But why ???
	Cohesion and Coupling
	Cohesion and coupling
	Final : be careful
	Benefits of expert
	Creator Pattern
	Solution
	Creator
	Creator Example
	Sale aggregates SalesLineItems
	The sequence diagram helps
	Benefits
	Creator Pattern
	Low Coupling
	Example
	Alternative
	Common form of coupling
	High Cohesion
	Example
	Same alternative
	Scenarios (Booch94)
	Controller
	Example
	Two possibilities
	The controller delegates
	Allocation of operations
	Issues
	Two couples
	Creating a Sale
	Enter an Item to the Sale
	Making payment
	Initialisation
	Remember
	More patterns (or principles)
	Polymorphism
	Example : Multiple tax calculator
	Final
	Pure Fabrication
	Indirection
	Example : an adapter
	Finally
	Protected Variation

