
CONCEPTION OBJET
GRASP PATTERNS
General Responsibility Assignment Software Patterns

Grasp Patterns
 Recognize that according to

Craig Larman:
1. “The skillful assignment of

responsibilities is extremely
important in object design,

2. Determining the assignment of
responsibilities often occurs
during the creation of
interaction diagrams and
certainly during programming.”

Resources
 www.unf.edu/~

broggio/cen6017/38.DesignPatters-Part2.
ppt

 www.academic.marist.edu/~jzbv/.../
DesignPatterns/GRASP.pp

 …

http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp

Grasp Patterns
 During Object Design

 Make choice about the assignment of
responsibilities to software classes

Responsibility

Expert Pattern
 Sale example
 Who is responsible for knowing the total

of the sale ?
 Who has the information to determine

the total

(Information) Expert Pattern
 Look in the Domain Model
 Domain Model : conceptual classes
 Design Model : software classes
 So

 Choose a domain model class
 Create a new class based on Domain Model

class

Expert Pattern – Using Domain Model

 There is a Sale
class in the
domain model

Sale

date
time

SalesLineItem

quantity

Product
Specification

description
price
itemID

1

*

* 1
Described by

Contains

Add Sale Class to the design
model
 Add the

responsibility of
knowing its total
 Method getTotal()

:Sale

date
time

getTotal()New method ------

t := getTotal()
: Sale

And then
What information is needed to determine
the line item subtotals?
We need: SalesLineItem.quantity and
 ProductSpecification.price

t := getTotal()
: Sale : SalesLineItem1 *: st := getSubtotal()

:Sale
date
time

getTotal()

:SalesLineItem

quantity

getSubtotal()

How the domain model is
used
 And we need to know the product price
 The design class must include a method

getPrice()
 The design classes show how entities are

used

Finally
 Responsabilities

are placed with
the object that
had the
information
needed to fulfill it

Design Model considerations
 Often requires spanning several classes
 Collaboration between partial

information experts
 these “information experts” do

things relative to the information
they ‘know.’

Be careful
 Who should be responsible for saving

Sale in the database ?
 Each entity cannot be responsible for

that
 Problem of

 Cohesion and coupling
 Reuse and duplication

But why ???

Cohesion and Coupling
 SQL/JDBC Code in the Sale Class
 It is not anymore only a sale (decreased

cohesion)
 This is a new responsibility (saving itself)
 (Separate I/O from data manipulation)

Cohesion and coupling
 Coupling Sale with the database service
 Sale belong to the domain layer

 Coupled to other domain objects
 Difficult to change the storage service

Final : be careful
 Keep application logic in one place
 Keep database logic in another place
 Separation of concern is good for

cohesion and coupling

Benefits of expert
 Maintain encapsulation
 Supports low coupling
 Behavior distributed accross classes that

have the required information
 High cohesion, Better reuse

Creator Pattern
 Who is responsible for creating new

instances of some classes

Solution
 Assign class B the responsibility to create an instance of
class A if one or more of the following is true:

 B aggregates A (simple aggregate; shared attributes)
 B contains A (composition; non-shared attributes)
 B records instances of A objects
 B closely uses A objects
 B has the initializing data that will be passed to A when it is
created (thus B is an Expert with respect to creating A)
e.g. queue collection class; queue driver class; stack ….

 If more than one option applies, prefer a class B which
aggregates or contains class A.

Creator
 Creation of objects is very common

We have a State class and we create
instances of State objects, or
We have a CD class, and we create instances
(an array?) of CD objects….

Creator results in low coupling, increased
clarity, encapsulation and reusability

Creator Example
 Who is

responsible for
creating
SalesLineItem

Sale aggregates
SalesLineItems
 Sale is a good

candidate to have
the responsibility
of creating
SalesLineItems

 Seems very
obvious

The sequence diagram helps

Benefits
 Creator connected

to the created object
 Creator has the

initializing data
needed for the
creation

 Cf Larman book

 Creator is a kind
of expert

Creator Pattern
 Sometimes it is

better to delegate
creation to a
helper Class

 The Factory
pattern

Low Coupling
 Assign a responsibility to

keep the coupling low
 Support low dependency,

low change impact and
increased use

 High coupling is not
desirable
 Hard to change,

understand, reuse

Example
 Register is coupled to payment

Alternative
 Payment known from Sale. Sale has to

know Payment

Common form of coupling
 TypeX has an attribute that refers to

TypeY
 TypeX instance call a service on a TypeY

instance
 TypeX has a method that references an

instance of TypeY (parameter, local
variable)

 TypeX is a subclass of TypeY
 TypeY is an interface and TypeX

implements it

High Cohesion
 Assign responsibility to keep cohesion

high
 Measure of the relation between an

element responsibilities
 Low cohesion mean

 Hard to comprehend, reuse and maintain

Example
 Register creates payment

Same alternative
 Register has less responsibilities – Higher

cohesion

Scenarios (Booch94)

Controller
 Assign the responsibility for handling

event message
 Facade Controller
 Use Case or Session controler

 This is not a UI class
 Who is responsible for handling input

system event

Example

Two possibilities

The controller delegates
 It does not do the work by itself
 It coordinates/controls the activity

Allocation of operations

Issues
 Avoid bloated controllers (low cohesion)

 Add more controllers
 The controller delegates the responsibility

to fulfill operation on to other objects.

Two couples

Creating a Sale

Enter an Item to the Sale

Making payment

Initialisation

Remember
 Low Coupling/High Cohesion
 Expert
 Creator
 Controller
 Not exactly patterns but strong

guidelines.

More patterns (or principles)
 Polymorphism
 Indirection
 Pure Fabrication
 Protected Variation

Polymorphism
 When behavior vary by type assign the

responsibility to the type for which the type
vary.
 Corollary: Do not test for the type of an object

and use conditional logic to perform varying
alternatives based on type.

 How to create pluggable component ? How to
handle alternatives based on types ?

Example : Multiple tax
calculator

Final
 Very easy to extend and add variations
 New implementations can be added with

affecting the client
 Do it only if there are known variations

(no future proofing)

Pure Fabrication
 A class to save cohesion and coupling – a

creation of imagination

Indirection
 Assign the responsibility to an

intermediate object to mediate between
component or services so that they are
not directly coupled

 How to decouple objects to increase
reuse.

Example : an adapter

Finally
 Reduce coupling
 Protect from variations
 Indirections are often Pure Fabrication

 PersistenceStorage

Protected Variation
 Identify points of predicted variation and

instability. Assign responsibilities to
create a stable interface around them

	Conception OBJET GRASP Patterns
	Grasp Patterns
	Resources
	Grasp Patterns
	Responsibility
	Expert Pattern
	(Information) Expert Pattern
	Expert Pattern – Using Domain Model
	Add Sale Class to the design model
	And then
	How the domain model is used
	Finally
	Design Model considerations
	Be careful
	But why ???
	Cohesion and Coupling
	Cohesion and coupling
	Final : be careful
	Benefits of expert
	Creator Pattern
	Solution
	Creator
	Creator Example
	Sale aggregates SalesLineItems
	The sequence diagram helps
	Benefits
	Creator Pattern
	Low Coupling
	Example
	Alternative
	Common form of coupling
	High Cohesion
	Example
	Same alternative
	Scenarios (Booch94)
	Controller
	Example
	Two possibilities
	The controller delegates
	Allocation of operations
	Issues
	Two couples
	Creating a Sale
	Enter an Item to the Sale
	Making payment
	Initialisation
	Remember
	More patterns (or principles)
	Polymorphism
	Example : Multiple tax calculator
	Final
	Pure Fabrication
	Indirection
	Example : an adapter
	Finally
	Protected Variation

