
CONCEPTION OBJET
GRASP PATTERNS
General Responsibility Assignment Software Patterns

Grasp Patterns
 Recognize that according to

Craig Larman:
1. “The skillful assignment of

responsibilities is extremely
important in object design,

2. Determining the assignment of
responsibilities often occurs
during the creation of
interaction diagrams and
certainly during programming.”

Resources
 www.unf.edu/~

broggio/cen6017/38.DesignPatters-Part2.
ppt

 www.academic.marist.edu/~jzbv/.../
DesignPatterns/GRASP.pp

 …

http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.unf.edu/~broggio/cen6017/38.DesignPatters-Part2.ppt
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp
http://www.academic.marist.edu/~jzbv/.../DesignPatterns/GRASP.pp

Grasp Patterns
 During Object Design

 Make choice about the assignment of
responsibilities to software classes

Responsibility

Expert Pattern
 Sale example
 Who is responsible for knowing the total

of the sale ?
 Who has the information to determine

the total

(Information) Expert Pattern
 Look in the Domain Model
 Domain Model : conceptual classes
 Design Model : software classes
 So

 Choose a domain model class
 Create a new class based on Domain Model

class

Expert Pattern – Using Domain Model

 There is a Sale
class in the
domain model

Sale

date
time

SalesLineItem

quantity

Product
Specification

description
price
itemID

1

*

* 1
Described by

Contains

Add Sale Class to the design
model
 Add the

responsibility of
knowing its total
 Method getTotal()

:Sale

date
time

getTotal()New method ------

t := getTotal()
: Sale

And then
What information is needed to determine
the line item subtotals?
We need: SalesLineItem.quantity and
 ProductSpecification.price

t := getTotal()
: Sale : SalesLineItem1 *: st := getSubtotal()

:Sale
date
time

getTotal()

:SalesLineItem

quantity

getSubtotal()

How the domain model is
used
 And we need to know the product price
 The design class must include a method

getPrice()
 The design classes show how entities are

used

Finally
 Responsabilities

are placed with
the object that
had the
information
needed to fulfill it

Design Model considerations
 Often requires spanning several classes
 Collaboration between partial

information experts
 these “information experts” do

things relative to the information
they ‘know.’

Be careful
 Who should be responsible for saving

Sale in the database ?
 Each entity cannot be responsible for

that
 Problem of

 Cohesion and coupling
 Reuse and duplication

But why ???

Cohesion and Coupling
 SQL/JDBC Code in the Sale Class
 It is not anymore only a sale (decreased

cohesion)
 This is a new responsibility (saving itself)
 (Separate I/O from data manipulation)

Cohesion and coupling
 Coupling Sale with the database service
 Sale belong to the domain layer

 Coupled to other domain objects
 Difficult to change the storage service

Final : be careful
 Keep application logic in one place
 Keep database logic in another place
 Separation of concern is good for

cohesion and coupling

Benefits of expert
 Maintain encapsulation
 Supports low coupling
 Behavior distributed accross classes that

have the required information
 High cohesion, Better reuse

Creator Pattern
 Who is responsible for creating new

instances of some classes

Solution
 Assign class B the responsibility to create an instance of
class A if one or more of the following is true:

 B aggregates A (simple aggregate; shared attributes)
 B contains A (composition; non-shared attributes)
 B records instances of A objects
 B closely uses A objects
 B has the initializing data that will be passed to A when it is
created (thus B is an Expert with respect to creating A)
e.g. queue collection class; queue driver class; stack ….

 If more than one option applies, prefer a class B which
aggregates or contains class A.

Creator
 Creation of objects is very common

We have a State class and we create
instances of State objects, or
We have a CD class, and we create instances
(an array?) of CD objects….

Creator results in low coupling, increased
clarity, encapsulation and reusability

Creator Example
 Who is

responsible for
creating
SalesLineItem

Sale aggregates
SalesLineItems
 Sale is a good

candidate to have
the responsibility
of creating
SalesLineItems

 Seems very
obvious

The sequence diagram helps

Benefits
 Creator connected

to the created object
 Creator has the

initializing data
needed for the
creation

 Cf Larman book

 Creator is a kind
of expert

Creator Pattern
 Sometimes it is

better to delegate
creation to a
helper Class

 The Factory
pattern

Low Coupling
 Assign a responsibility to

keep the coupling low
 Support low dependency,

low change impact and
increased use

 High coupling is not
desirable
 Hard to change,

understand, reuse

Example
 Register is coupled to payment

Alternative
 Payment known from Sale. Sale has to

know Payment

Common form of coupling
 TypeX has an attribute that refers to

TypeY
 TypeX instance call a service on a TypeY

instance
 TypeX has a method that references an

instance of TypeY (parameter, local
variable)

 TypeX is a subclass of TypeY
 TypeY is an interface and TypeX

implements it

High Cohesion
 Assign responsibility to keep cohesion

high
 Measure of the relation between an

element responsibilities
 Low cohesion mean

 Hard to comprehend, reuse and maintain

Example
 Register creates payment

Same alternative
 Register has less responsibilities – Higher

cohesion

Scenarios (Booch94)

Controller
 Assign the responsibility for handling

event message
 Facade Controller
 Use Case or Session controler

 This is not a UI class
 Who is responsible for handling input

system event

Example

Two possibilities

The controller delegates
 It does not do the work by itself
 It coordinates/controls the activity

Allocation of operations

Issues
 Avoid bloated controllers (low cohesion)

 Add more controllers
 The controller delegates the responsibility

to fulfill operation on to other objects.

Two couples

Creating a Sale

Enter an Item to the Sale

Making payment

Initialisation

Remember
 Low Coupling/High Cohesion
 Expert
 Creator
 Controller
 Not exactly patterns but strong

guidelines.

More patterns (or principles)
 Polymorphism
 Indirection
 Pure Fabrication
 Protected Variation

Polymorphism
 When behavior vary by type assign the

responsibility to the type for which the type
vary.
 Corollary: Do not test for the type of an object

and use conditional logic to perform varying
alternatives based on type.

 How to create pluggable component ? How to
handle alternatives based on types ?

Example : Multiple tax
calculator

Final
 Very easy to extend and add variations
 New implementations can be added with

affecting the client
 Do it only if there are known variations

(no future proofing)

Pure Fabrication
 A class to save cohesion and coupling – a

creation of imagination

Indirection
 Assign the responsibility to an

intermediate object to mediate between
component or services so that they are
not directly coupled

 How to decouple objects to increase
reuse.

Example : an adapter

Finally
 Reduce coupling
 Protect from variations
 Indirections are often Pure Fabrication

 PersistenceStorage

Protected Variation
 Identify points of predicted variation and

instability. Assign responsibilities to
create a stable interface around them

	Conception OBJET GRASP Patterns
	Grasp Patterns
	Resources
	Grasp Patterns
	Responsibility
	Expert Pattern
	(Information) Expert Pattern
	Expert Pattern – Using Domain Model
	Add Sale Class to the design model
	And then
	How the domain model is used
	Finally
	Design Model considerations
	Be careful
	But why ???
	Cohesion and Coupling
	Cohesion and coupling
	Final : be careful
	Benefits of expert
	Creator Pattern
	Solution
	Creator
	Creator Example
	Sale aggregates SalesLineItems
	The sequence diagram helps
	Benefits
	Creator Pattern
	Low Coupling
	Example
	Alternative
	Common form of coupling
	High Cohesion
	Example
	Same alternative
	Scenarios (Booch94)
	Controller
	Example
	Two possibilities
	The controller delegates
	Allocation of operations
	Issues
	Two couples
	Creating a Sale
	Enter an Item to the Sale
	Making payment
	Initialisation
	Remember
	More patterns (or principles)
	Polymorphism
	Example : Multiple tax calculator
	Final
	Pure Fabrication
	Indirection
	Example : an adapter
	Finally
	Protected Variation

