
CONCEPTION OBJET
GRASP PATTERNS
General Responsibility Assignment Software Patterns



Grasp Patterns
 Recognize that according to 

Craig Larman:
1. “The skillful assignment of 

responsibilities is extremely 
important in object design,

2. Determining the assignment of 
responsibilities often occurs 
during the creation of 
interaction diagrams and 
certainly during programming.”



Resources
 www.unf.edu/~

broggio/cen6017/38.DesignPatters-Part2.
ppt

 www.academic.marist.edu/~jzbv/.../
DesignPatterns/GRASP.pp

 …
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Grasp Patterns
 During Object Design

 Make choice about the assignment of 
responsibilities to software classes



Responsibility



Expert Pattern
 Sale example
 Who is responsible for knowing the total 

of the sale ?
 Who has the information to determine 

the total



(Information) Expert Pattern
 Look in the Domain Model
 Domain Model : conceptual classes
 Design Model : software classes
 So 

 Choose a domain model class
 Create a new class based on Domain Model 

class



Expert Pattern – Using Domain Model

 There is a Sale 
class in the 
domain model

Sale

date
time

SalesLineItem

quantity

Product
Specification

description
price
itemID

1

*

* 1
Described by

Contains



Add Sale Class to the design 
model
 Add the 

responsibility of 
knowing its total
 Method getTotal()

:Sale

date
time

getTotal()New method ------

t := getTotal()
: Sale



And then
What information is needed to determine 
the line item subtotals?
We need:  SalesLineItem.quantity and 
                ProductSpecification.price 

t := getTotal()
: Sale : SalesLineItem1 *: st := getSubtotal()

:Sale
date
time

getTotal()

:SalesLineItem

quantity

getSubtotal()



How the domain model is 
used
 And we need to know the product price
 The design class must include a method 

getPrice()
 The design classes show how entities are 

used



Finally
 Responsabilities 

are placed with 
the object that 
had the 
information 
needed to fulfill it



Design Model considerations
 Often requires spanning several classes
 Collaboration between partial 

information experts
 these “information experts” do 

things relative to the information 
they ‘know.’



Be careful
 Who should be responsible for saving 

Sale in the database ?
 Each entity cannot be responsible for 

that
 Problem of

 Cohesion and coupling
 Reuse and duplication



But why ???



Cohesion and Coupling
 SQL/JDBC Code in the Sale Class
 It is not anymore only a sale (decreased 

cohesion)
 This is a new responsibility (saving itself)
 (Separate I/O from data manipulation)



Cohesion and coupling
 Coupling Sale with the database service
 Sale belong to the domain layer 

 Coupled to other domain objects
 Difficult to change the storage service



Final : be careful
 Keep application logic in one place
 Keep database logic in another place
 Separation of concern is good for 

cohesion and coupling



Benefits of expert
 Maintain encapsulation
 Supports low coupling
 Behavior distributed accross classes that 

have the required information
 High cohesion, Better reuse



Creator Pattern
 Who is responsible for creating new 

instances of some classes



Solution
 Assign class B the responsibility to create an instance of 
class A if one or more of the following is true:

 B aggregates A  (simple aggregate;  shared attributes)
 B contains A      (composition;  non-shared attributes)
 B records instances of A objects
 B closely uses A objects
 B has the initializing data that will be passed to A when it is 
created (thus B is an Expert with respect to creating A)
e.g. queue collection class;  queue driver class;  stack ….

     If more than one option applies, prefer a class B which 
aggregates or contains class A.



Creator
 Creation of objects is very common

We have a State class and we create 
instances of State objects, or
We have a CD class, and we create instances 
(an array?) of CD objects….

Creator results in low coupling, increased 
clarity, encapsulation and reusability



Creator Example
 Who is 

responsible for 
creating 
SalesLineItem



Sale aggregates 
SalesLineItems
 Sale is a good 

candidate to have 
the responsibility 
of creating 
SalesLineItems

 Seems very 
obvious



The sequence diagram helps



Benefits
 Creator connected 

to the created object
 Creator has the 

initializing data 
needed for the 
creation

 Cf Larman book

 Creator is a kind 
of expert



Creator Pattern
 Sometimes it is 

better to delegate 
creation to a 
helper Class

 The Factory 
pattern



Low Coupling
 Assign a responsibility to 

keep the coupling low
 Support low dependency, 

low change impact and 
increased use

 High coupling is not 
desirable
 Hard to change, 

understand, reuse



Example
 Register is coupled to payment



Alternative
 Payment known from Sale. Sale has to 

know Payment



Common form of coupling
 TypeX has an attribute that refers to 

TypeY
 TypeX instance call a service on a TypeY 

instance
 TypeX has a method that references an 

instance of TypeY (parameter, local 
variable)

 TypeX is a subclass of TypeY
 TypeY is an interface and TypeX 

implements it



High Cohesion
 Assign responsibility to keep cohesion 

high
 Measure of the relation between an 

element responsibilities
 Low cohesion mean

 Hard to comprehend, reuse and maintain



Example
 Register creates payment



Same alternative
 Register has less responsibilities – Higher 

cohesion



Scenarios (Booch94)



Controller
 Assign the responsibility for handling 

event message
 Facade Controller
 Use Case or Session controler

 This is not a UI class
 Who is responsible for handling input 

system event



Example



Two possibilities



The controller delegates
 It does not do the work by itself
 It coordinates/controls the activity



Allocation of operations



Issues
 Avoid bloated controllers (low cohesion)

 Add more controllers
 The controller delegates the responsibility 

to fulfill operation on to other objects.



Two couples



Creating a Sale



Enter an Item to the Sale



Making payment



Initialisation



Remember
 Low Coupling/High Cohesion
 Expert
 Creator
 Controller
 Not exactly patterns but strong 

guidelines.



More patterns (or principles)
 Polymorphism
 Indirection
 Pure Fabrication
 Protected Variation



Polymorphism
 When behavior vary by type assign the 

responsibility to the type for which the type 
vary.
 Corollary: Do not test for the type of an object 

and use conditional logic to perform varying 
alternatives based on type.

 How to create pluggable component ? How to 
handle alternatives based on types ?



Example : Multiple tax 
calculator



Final
 Very easy to extend and add variations
 New implementations can be added with 

affecting the client
 Do it only if there are known variations 

(no future proofing)



Pure Fabrication
 A class to save cohesion and coupling – a 

creation of imagination



Indirection
 Assign the responsibility to an 

intermediate object to mediate between 
component or services so that they are 
not directly coupled

 How to decouple objects to increase 
reuse.



Example : an adapter 



Finally
 Reduce coupling
 Protect from variations
 Indirections are often Pure Fabrication

 PersistenceStorage



Protected Variation
 Identify points of predicted variation and 

instability. Assign responsibilities to 
create a stable interface around them
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