ARCHITECTURAL
DESIGN

- r

Sources

SOMMERVILLE Third Edifien

APPLYING UML
AND PATTERNS

An intraduction to Chject-Oriented Analysis and Design
and Rerative Development

PEARSON

Definition
e
0 Architectural design : the process for
identifying the sub-systems and the
framework for sub-systems control and
communication

0 The software architecture is the output
of this process

Definition
I

O An architecture is the set of significant decisions about the
organization of a software system, the selection of the
structural elements and their interfaces by which the
system is composed, together with their behaviour as
specified in the collaborations among those elements, the
composition of these structural and behavioural elements
Into progressively larger subsystems, and the architectural
style that guides this organization---these elements and
their interfaces, their collaborations, and their composition.
[BRJ99]

Architecture analysis

e
O Investigation
* ldentify functional and non functional

requirements that have an impact on
system design

0 Design
* Resolution of these forces and

requirements in the design of software,
hardware, operations, policies,...

Construction analogy

e
O Architecture

* Programs and relations between programs
and their components

0 Urbanisation (not seen here)
* Architecture in the large
* Enterprise systems

Explicit architecture
.
0 Stakeholder communication

* Architecture may be used as a focus of discussion by
system stakeholders.

0 System analysis

* Means that analysis of whether the system can meet its
non-functional requirements is possible.

O Large-scale reuse

* The architecture may be reusable across a range of
systems

* Product-line architectures may be developed.
SE9

Architectural representation

.
O Box and lines

0 Component diagrams
O Architectural models

Component Diagram

=<infrastructure==

Persistence

Datafccess
Facilities
ﬁ-\.
poin,_ e
- 4 N
v \ T Encryplion
e -~ % -
Seminar - Datafccess . Access Co
Management - Student e
s<application>> |\~ Student ™ X -7
\‘K o P & ;\f/ 4
Zs b
\\ % o s EaN s Fas
\ Dthccess it e il e
\/ \r’ Ciimar R _ .} =<infrastruciure==
; — Paysiat
A HI;'u-i"‘.ﬂi'l'l i e
. /! o
T A, o £ =
L -
Student S DataAcgess Lo
Schedule £

=
Administration &
=<application>> —— __Ed_l? @

R

University DB
=<databases>

|

|

|

i
_é] JDBC

http://www.agilemodeling.com/artifacts/componentDiagram.htm

Arcnitectural aesign
decisions

T
O |s there a generic application architecture that can be
used?

0 How will the system be distributed?
O What architectural styles are appropriate?
0 What approach will be used to structure the system?
0 How will the system be decomposed into modules?
0 What control strategy should be used?
0 How will the architectural design be evaluated?
0 How should the architecture be documented?
SE9

Architecture and system characteristics
I
O Performance

* Localise critical operations and minimise communications. Use large rather
than fine-grain components.

O Security
* Use a layered architecture with critical assets in the inner layers.
O Safety
* Localise safety-critical features in a small number of sub-systems.
O Availability
* Include redundant components and mechanisms for fault tolerance.
O Maintainability
* Use fine-grain, replaceable components.
SE9

Architectural views
- 0

O What views or perspectives are useful when designing and
documenting a system’s architecture?

0 What notations should be used for describing architectural
models?
O Each architectural model only shows one view or perspective of

the system.

* It might show how a system is decomposed into modules, how the
run-time processes interact or the different ways in which system
components are distributed across a network. For both design and
documentation, you usually need to present multiple views of the
software architecture.

Chapter 6 Architectural design

4 + 1 view model of software

architecture
B
0 A logical view, which shows the key abstractions in the system
as objects or object classes.

O A process view, which shows how, at run-time, the system is
composed of interacting processes.

0 A development view, which shows how the software is
decomposed for development.

0 A physical view, which shows the system hardware and how
software components are distributed across the processors in
the system.

O Related using use cases or scenarios (+1)

Chapter 6 Architectural design

The views

End-user Programmers
Functionality Software management
: . Development
Logical View View
l (Scenarios)

Process View Physical View
Integrators :
Fermance Srem e
Scalability Communications

Figure 1 — The “4+17 view model

Kruchten, Philippe (1995, November).
Architectural Blueprints — The “4+1" View Model of Software Architectur

e. "y = x P e

http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf

Example - Process Blueprint

=

Loww rabe

Figure 5 — Process blueprint for the Télic PABX (partial)

Example - Development View

>

5
CAATS, MAATS, efc... Man-Machine Interface Off-line tools

External systems Test hamesses

L
HATS Components
po ATC Functional areas: Flight manag-

ement, Sector Management, etc.

UL
NI N

>
ATC Framework 3

Domain Specific

Aeronautical classes
ATC classes

o

-

>
Distributed Virtual Machine 2

Support Mechanisms:
Communication, Time, Storage,
Resource management, etc.

Cormman AT

- >
Basic elements | 1
Bindings
Low-level services

Common utilities

Domain
Independent e
-

HardWare, 05, COTS
Figure 6 — The 5 layers of Hughes Air Traffic Systems (HATS)

Architectural patterns
I =
O Patterns are a means of representing, sharing and
reusing knowledge.

O An architectural pattern is a stylized description of good
design practice, which has been tried and tested in
different environments.

O Patterns should include information about when they
are and when the are not useful.

O Patterns may be represented using tabular and
graphical descriptions.

Chapter 6 Architectural design

Architectural patterns

e
0 Solutions for large scale, coarse grained
design

0 Same principles as Design Patterns

Layered architecture
I
0 Used to model the interfacing of sub-systems.

0 Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.

O Supports the incremental development of sub-
systems in different layers. When a layer interface
changes, only the adjacent layer is affected.

0 However, often artificial to structure systems in this
way.

Chapter 6 Architectural design

Layer Example
T

Application Layer 7 Provides miscellaneous protocols
| for common activities

Presentation Layer 6 Structures information
I and attaches semantics

Session Layer 5 Provides dialog control and
| synchronization facllities
Transport Layer 4 Breaks messages into packets
and guarantees delivery
T
Network Layer 3 Selects a route
| from sender to receiver
Data Link Layer 2 Detects and corrects errors
] in bit sequences
Physical Layer 1 Transmits bits: velocity,

bit-code, connection, etc.

lNe Layereqa arcnitecture

Description

Example

When used

Advantages

Disadvantages

Organizes the system into layers with related functionality associated with each
layer. A layer provides services to the layer above it so the lowest-level layers
represent core services that are likely to be used throughout the system. See
Figure 6.6.

A layered model of a system for sharing copyright documents held in different
libraries, as shown in Figure 6.7.

Used when building new facilities on top of existing systems; when the
development is spread across several teams with each team responsibility for a
layer of functionality; when there is a requirement for multi-level security.

Allows replacement of entire layers so long as the interface is maintained.
Redundant facilities (e.g., authentication) can be provided in each layer to
increase the dependability of the system.

In practice, providing a clean separation between layers is often difficult and a
high-level layer may have to interact directly with lower-level layers rather than
through the layer immediately below it. Performance can be a problem because of
multiple levels of interpretation of a service request as it is processed at each

A¥hapter 6 Architectural design

Layer Structure
T

Class Collaborator
Layer J * Layer J-1
Responsibility

¢ Provides services
used by Layer J+1.

* Delegates subtasks
to Layer J-1.

A generic layeread

architecture
22

User Interface I
User Interface Management
Authentication and Authorization
Core Business Logic/Application Functionality
System Utilities
System Support (OS, Database etc.) I

Chapter 6 Architectural design

| ne arcnicecaure or the
LIBSYS system

Web Browser Interface

The Model-View-Controller (MVC)

Description Separates presentation and interaction from the system data. The system is structured into three
logical components that interact with each other. The Model component manages the system data
and associated operations on that data. The View component defines and manages how the data
is presented to the user. The Controller component manages user interaction (e.g., key presses,
mouse clicks, etc.) and passes these interactions to the View and the Model. See Figure 6.3.

Example Figure 6.4 shows the architecture of a web-based application system organized using the MVC
pattern.

When used Used when there are multiple ways to view and interact with data. Also used when the future
requirements for interaction and presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice versa. Supports
presentation of the same data in different ways with changes made in one representation shown
in all of them.

Disadvantages Can involve additional code and code complexity when the data model and interactions are
simple.

Chapter 6 Architectural design

Organization of the Model-View-Controller
I

Maps User Actions S e\I’égTo N Renders Model
to Model Updates Requests Model Updates
Selects View - Sends User Events to
User Bvents | ~ontroller
Change
Notification
State State

Change Query

Encapsulates Application
State

Notifies View of State
Changes

Chapter 6 Architectural design

Web application architecture using the
MVC pattern

Form to

HTTP Request Processing Display Dynamic Page
Application-Spedific Logic ={ Generation
Data Validation User Events | FOrms Management
]
Change
Update Notification Refresh
Request Request

Business Logic
.| Database

Key points

O I
O A software architecture is a description of how a software system is
organized.

0 Architectural design decisions include decisions on the type of
application, the distribution of the system, the architectural styles to
be used.

O Architectures may be documented from several different perspectives
or views such as a conceptual view, a logical view, a process view, and
a development view.

O Architectural patterns are a means of reusing knowledge about
generic system architectures. They describe the architecture, explain
when it may be used and describe its advantages and disadvantages.

Chapter 6 Architectural design

Repository architecture
B T
0 Sub-systems must exchange data. This may be
done in two ways:

* Shared data is held in a central database or repository
and may be accessed by all sub-systems;

* Each sub-system maintains its own database and
passes data explicitly to other sub-systems.

0 When large amounts of data are to be shared, the
repository model of sharing is most commonly
used a this is an efficient data sharing mechanism.

Chapter 6 Architectural design

The Repository pattern

Description

Example

When used

Advantages

Disadvantages

All data in a system is managed in a central repository that is accessible to all
system components. Components do not interact directly, only through the
repository.

Figure 6.9 is an example of an IDE where the components use a repository of
system design information. Each software tool generates information which is
then available for use by other tools.

You should use this pattern when you have a system in which large volumes of
information are generated that has to be stored for a long time. You may also
use it in data-driven systems where the inclusion of data in the repository
triggers an action or tool.

Components can be independent—they do not need to know of the existence
of other components. Changes made by one component can be propagated to
all components. All data can be managed consistently (e.g., backups done at
the same time) as it is all in one place.

The repository is a single point of failure so problems in the repository affect
the whole system. May be inefficiencies in organizing all communication

throug(T g (rergsiEoni rBlsiriteuting the¢ cRpSs$itaty across several computers
may be difficult.

A repository arcnitecture 1or
an IDE

Chapter 6 Architectural design

Client-server architecture
B
0 Distributed system model which shows how data

and processing is distributed across a range of
components.

* Can be implemented on a single computer.

0 Set of stand-alone servers which provide specific
services such as printing, data management, etc.

O Set of clients which call on these services.
O Network which allows clients to access servers.

Chapter 6 Architectural design

The Client-server pattern
T

Description In a client—server architecture, the functionality of the system is organized into services, with
each service delivered from a separate server. Clients are users of these services and access
servers to make use of them.

Example Figure 6.11 is an example of a film and video/DVD library organized as a client—server system.

When used Used when data in a shared database has to be accessed from a range of locations. Because
servers can be replicated, may also be used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed across a network.
General functionality (e.g., a printing service) can be available to all clients and does not need
to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of service attacks or server
failure. Performance may be unpredictable because it depends on the network as well as the
system. May be management problems if servers are owned by different organizations.

Chapter 6 Architectural design

A client-server architecture for a film

library
=

Internet
Catalogue Video Picture Web
Semver Server Semver Semver
Library Film Store Photo Store Film and

Catalogue Photo Info.

ClliapLel U AlLLLItecLLulal uesiyili

Pipe and filter architecture
I
O Functional transformations process their inputs to

produce outputs.

0 May be referred to as a pipe and filter model (as in
UNIX shell).

O Variants of this approach are very common. When
transformations are sequential, this is a batch
sequential model which is extensively used in data
processing systems.

0 Not really suitable for interactive systems.

Chapter 6 Architectural design

The pipe and filter pattern

Description The processing of the data in a system is organized so that each processing component (filter) is
discrete and carries out one type of data transformation. The data flows (as in a pipe) from one
component to another for processing.

Example Figure 6.13 is an example of a pipe and filter system used for processing invoices.

When used Commonly used in data processing applications (both batch- and transaction-based) where inputs are
processed in separate stages to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style matches the structure of many
business processes. Evolution by adding transformations is straightforward. Can be implemented as
either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between communicating transformations. Each
transformation must parse its input and unparse its output to the agreed form. This increases system
overhead and may mean that it is impossible to reuse functional transformations that use
incompatible data structures.

Chapter 6 Architectural design

An example of the pipe and filter

architecture

Issue .
=2
Find Payments Issue Payment Reminders
Due Reminder

Read lssued ldentify
Invoices Payments
‘ Invoices I ‘ Payments I

Chapter 6 Architectural design

Responsibilities/Collaboration

-ﬁ

Class Collaborators Class Collaborators
Filter * Pipe Pipe * Data Source
R : * Data Sink
Responsibility Responsibility e Filter
* Gets input data. * Transfers data.
* Performs a function * Buffers data.
on its input data. * Synchronizes
* Supplies output active neighbors.
data.
J
Class Collaborators Class Collaborators
Data Source * Pipe Data Sink * Pipe
Responsibility Responsibility
* Delivers input to * Consumes gutput.
processing
pipeline.

Scenario 1
e

Data Source Filterl Filter2 Data Sink
push push push
AW
data| write
- fl
>y
e | daca|write
el
]
i
1A |

Scenario 2

Data Source Filterl Filter2 Data Sink
pull pull pull
AN
read
read B
read -
-l - il
data ; |
- {2
data ; |
-
I data

More complex Scenario

Data Source Filterl Buffering Filter2 Data Sink
pull/push Pipe pull/push
M AN
read
[| -
data
Ej“rtﬂd
=
data .ﬂ‘—_'
wrile
data
> |
g}
A

Description

Example

When used

Advantages

Disadvantages

Introduce a broker component to achieve better decoupling of clients and servers. Servers register
themselves with the broker, and make their services available to cllents through method interfaces.
Clients access the functionality of servers by sending requests via the broker. A broker’s tasks include
locating the appropriate server, forwarding the request to the server and transmitting results and
exceptions back to the client..

CORBA, COM

Your environment is a distributed and possibly heterogeneous system with independent cooperating
components..

Location Transparency, Changeability and extensibility of components, Portability of a Broker system,
Reusability.

Restricted effiency, Lower fault tolerance, Testing and Debugging.

COllaboration -
Responsibilities

Class Collaborators Class Collaborators
Client-side Proxy * Client Server-side Proxy ¢ Server
* Broker P * Broker
Responsibility Responsibility
* Encapsulates sys- * Calls services with-
tem-specific func- in the server.
tionality. * Encapsulates sys-
* Mediates between tem-specific func-
the client and the tlonality.
broker. * Mediates between
the server and the
broker.
c'g’nker ?“g;le"mm Class Collaborators
* Server Bridge * Broker
jfefggf;f;b;;:gs * Client-side Proxy Responsibility * Bridge
ser'-;crsf.% ¢ Server-side Proxy * Encapsulates net-
* Offers APIs * Bridge work-specific fune-
* Transfers . tlonality.,
messages. * Mediates between

* Error recovery,
Interoperates with
other brokers
through bridges.

¢ Locates servers.

the local broker
and the bridge of a
remote broker.

Communications

translers
Clent-side | M¢553EC Broker
OXY m;;n_ﬂent_l?ﬂp
update_repository
pock dars e sEo
e acknowledgment
send_request find_server
return find_client
forward_request
forward_response
calls
calls
Client uses Bridge
AFl dg
call_server e pack_data
start_task unpack_data
use_Broker_AP] forward_message

transmit_message

transfers
MESSALE | gerver-side
Proxy
pack_data
unpack_data
call_service
send_response
calls
UsEs Server
AP1
_.__.ln.iﬂallzc
enter_main_loop
rurn_service
use_Broker_AP]

Client Client-side Broker Server-side Server

Proxy Proxy
| |
S 'ﬁiﬂl_semr
C e I I a rI O S send_request pack_data
fr]
forward_request find_server
Server Broker caZem‘ce
| unpack_data

register_service pack_data
_ r update_repository

forward_response

main L
start event
initiallze loop R By

acknowledgmerlt find_client

return

enter_main_loop
possible
mCé"iS

unpack_data

-

— | result I possible
process
boundary

possible
process

Example

/ Ohwell City Tourist Information ™\ Towm Ha
11/11/96
BMRSS International
Hotels City Mag
Broker
Restaurants _-J/{J*]-
Public Transport — |) . > tCompleteMapl...)
Sightseeing (S N Fcumn gitionl...)
—) showConnection(...)
U showPosition(...)
CityMap.getCompleteMapl..) locateBogHog(...)
Choose from menu

\ COMPUTER-TERMINAL NowWhat Space Center /

Other patterns

N
O Blackboard

O Presentation-Abstraction-Control
O Microkernel
O Reflection

Application architectures
I s,
0 Application systems are designed to meet an
organisational need.
0 As businesses have much in common, their application
systems also tend to have a common architecture that
reflects the application requirements.

O A generic application architecture is an architecture for
a type of software system that may be configured and
adapted to create a system that meets specific
requirements.

Chapter 6 Architectural design

use OT application
architectures

I
O As a starting point for architectural
design.

O As a design checklist.

O As a way of organising the work of the
development team.

0 As a means of assessing components for
reuse.

0 AS a vocaderad"yaﬁ@rt&aJaI@n@ about

N BN B IAA IAIA \'IAAA

EXamples OoT application
types

O Data processing applications

* Data driven applications that process data in batches without explicit user
intervention during the processing.

O Transaction processing applications

* Data-centred applications that process user requests and update information in
a system database.

O Event processing systems

* Applications where system actions depend on interpreting events from the
system’s environment.

O Language processing systems

* Applications where the users’ intentions are specified in a formal language that
is processed and interpreted by the system.

Chapter 6 Architectural design

Application type examples

O Focus here is on transaction processing and
language processing systems.

O Transaction processing systems
* E-commerce systems;
* Reservation systems.
O Language processing systems
* Compilers;
* Command interpreters.

Chapter 6 Architectural design

Iransaction processing
systems

_=
O Process user requests for information from a
database or requests to update the database.
O From a user perspective a transaction is:

* Any coherent sequence of operations that satisfies a
goal;

* For example - find the times of flights from London to
Paris.

0 Users make asynchronous requests for service
which are then processed by a transaction manager.

Chapter 6 Architectural design

The structure of transaction processing

applications
N

1/0 Application Transaction

Processing Logic Manager Database

Chapter 6 Architectural design

The software architecture of an ATM

system
|

Input Process Output

Get Customer . .
-
Validate Card - = I

Update Account
Seled Service Dispense Cash

ATM Database ATM

Chapter 6 Architectural design

INTOrmMation systems
architecture

I
O Information systems have a generic architecture that
can be organised as a layered architecture.

0 These are transaction-based systems as interaction with
these systems generally involves database transactions.

O Layers include:
* The user interface
* User communications
* Information retrieval
* System database

Chapter 6 Architectural design

Layered information system architecture
“———

User Interface I

User Authentication
Communications and Authorization

Information Retrieval and Modification I
Transaction Management
Database

Chapter 6 Architectural design

| Ne arcnitecture or the MHC-
PMS

- 5 -
e L___

Web Browser I
. . Form and Menu Data
Login Role Checking Manager validation
Security Patient Info. Data Import Report
Management Manager and Export Generation
Transaction Management
Patient Database

Chapter 6 Architectural design

vwep-pbased InfTormation

systems
I

O Information and resource management systems are now usually
web-based systems where the user interfaces are implemented
using a web browser.

O For example, e-commerce systems are Internet-based resource
management systems that accept electronic orders for goods or
services and then arrange delivery of these goods or services to
the customer.

O In an e-commerce system, the application-specific layer includes
additional functionality supporting a ‘shopping cart’ in which users
can place a number of items in separate transactions, then pay for
them all together in a single transaction.

Chapter 6 Architectural design

Server implementation
oot Syolome AT onen mplemented as mumerchent

server/architectures (discussed in Chapter 18)

* The web server is responsible for all user communications, with
the user interface implemented using a web browser;

* The application server is responsible for implementing
application-specific logic as well as information storage and
retrieval requests;

* The database server moves information to and from the database
and handles transaction management.

Chapter 6 Architectural design

Language processing
systems

;.
O Accept a natural or artificial language as input and
generate some other representation of that language.

O May include an interpreter to act on the instructions in
the language that is being processed.

O Used in situations where the easiest way to solve a
problem is to describe an algorithm or describe the
system data

* Meta-case tools process tool descriptions, method rules,
etc and generate tools.

Chapter 6 Architectural design

The architecture of a language
processing system

Translator
Source Chedk Syntax
Language Chedk Semantics
Instructions Generate

Abstract m/c
Instructions

Interpreter

Fetch
Iﬂ—. e JREHHS

Compiler components
;.
O A lexical analyzer, which takes input language tokens
and converts them to an internal form.

0 A symbol table, which holds information about the
names of entities (variables, class names, object
names, etc.) used in the text that is being translated.

0 A syntax analyzer, which checks the syntax of the
language being translated.

O A syntax tree, which is an internal structure
representing the program being compiled.

Chapter 6 Architectural design

Compiler components
B

0 A semantic analyzer that uses
iInformation from the syntax tree and the
symbol table to check the semantic
correctness of the input language text.

0 A code generator that ‘walks’ the syntax
tree and generates abstract machine
code.

Chapter 6 Architectural design

A pipe and filter compiler architecture
e

Symbol Table
Syntax Tree

Code
Ceneration

Lexical
Analysis

Chapter 6 Architectural design

A repository architecture for a language

processing system
e

Lexlcal Syrntax Sema ntic
Anal',lzer Analyzer Anal',rzer

Pretl'!,r— Ahstract Grammar

Pnnter Eyrntax Tree Definition
Symbol Output Cude
Table Definition {]eneratm

Repository

el A PRI IR LR e

Key points

-5
0 Models of application systems architectures help us
understand and compare applications, validate application
system designs and assess large-scale components for reuse.

O Transaction processing systems are interactive systems that
allow information in a database to be remotely accessed and
modified by a number of users.

O Language processing systems are used to translate texts from
one language into another and to carry out the instructions
specified in the input language. They include a translator and
an abstract machine that executes the generated language.

Chapter 6 Architectural design

	Architectural Design
	Sources
	Definition
	Definition
	Architecture analysis
	Construction analogy
	Explicit architecture
	Architectural representation
	Component Diagram
	Architectural design decisions
	Architecture and system characteristics
	Architectural views
	4 + 1 view model of software architecture
	The views
	Example – Process Blueprint
	Example – Development View
	Architectural patterns
	Architectural patterns
	Layered architecture
	Layer Example
	The Layered architecture pattern
	Layer Structure
	A generic layered architecture
	The architecture of the LIBSYS system
	The Model-View-Controller (MVC)
	Organization of the Model-View-Controller
	Web application architecture using the MVC pattern
	Key points
	Repository architecture
	The Repository pattern
	A repository architecture for an IDE
	Client-server architecture
	The Client–server pattern
	A client–server architecture for a film library
	Pipe and filter architecture
	The pipe and filter pattern
	An example of the pipe and filter architecture
	Responsibilities/Collaboration
	Scenario 1
	Scenario 2
	More complex Scenario
	Broker
	Collaboration - Responsibilities
	Communications
	Scenarios
	Example
	Other patterns
	Application architectures
	Use of application architectures
	Examples of application types
	Application type examples
	Transaction processing systems
	The structure of transaction processing applications
	The software architecture of an ATM system
	Information systems architecture
	Layered information system architecture
	The architecture of the MHC-PMS
	Web-based information systems
	Server implementation
	Language processing systems
	The architecture of a language processing system
	Compiler components
	Compiler components
	A pipe and filter compiler architecture
	A repository architecture for a language processing system
	Key points

