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About this document

License of this document:

Licence Creative Commons version 3.0 France (or later)

Attribution; Share alike

http://creativecommons.org/licenses/by-sa/3.0/fr/

Technical aspects

I LATEX document (class latex-beamer), compiled with latex-make

I Figures: Some xfig, some tikz, some inkscape

URL: http://www.loria.fr/~quinson/Teaching/TOP/
I Sheets, Practicals, exams, projects (sources available to teachers that ask me)
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About me

I Since Feb. 2005: Associate Professor at Université de Lorraine)
Teaching: Télécom Nancy, Research: AlGorille team (LORIA = UL/INRIA/CNRS)

Research: Experimental methodologies

I Assess distributed applications (perfs, bugs)

I SimGrid project: Simulator of distributed systems
Correct modeling, efficient simulation

I Formal verification (model-checking)

Teachings: Programming and Algorithms

I Introduction, Java/Scala, AlgoProg, C 2nd language

I System Prog; Ex-{Algo dist, P2P, Distributed Prog}
I PLM: Programmer’s Learning Machine

Outreach: Unplugged Computer Science, etc.

I More info: http://www.loria.fr/~quinson/ (Martin.Quinson@loria.fr)
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About this module: Algorithmic and Programming

Programming? Let the computer do your work!
I How to explain what to do?
I How to make sure that it does what it is supposed to? That it is efficient?
I What if it does not?

Module content and goals:
I Introduction to Algorithmic

I Master theoretical basements (computer science is a science)
I Know some classical problem resolution techniques
I Know how to evaluate solutions (correctness, performance)

I First steps in programming: learn-by-doing activity (you need to practice)

Other modules at Telecom Nancy
I Prerequisites

I Tactical programming in Scala: if, for, methods
I Sense of logic, intuition (good math background helps)

I Afterward: Object Oriented Programming; Object-Oriented Design

(please be patient, it’s our second time with TOP before OOP)
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Module organization

Time organization

I 6 two-hours lectures (CM, with Martin Quinson): Concepts introduction

I 10 two-hours exercise session (TD, with staff member1): Theoretical exercises

I 6 two-hours labs (TP, with staff member1): Coding exercises

I Homework: Systematically finish the in-class exercises

Evaluation
I Two hours table exam (closed book, only one sheet of notes allowed)

I Maybe some quiz at the beginning of labs

1 Olivier Festor, Sébastien Da Silva, Martin Quinson.
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Syllabus

1. Practical and Theoretical Foundations of Programming
I CS vs. SE; Abstraction for complex algorithms; Algorithmic efficiency.

2. Iterative Sorting Algorithms
I Specification; Selection, Insertion and Bubble sorts.

3. Recursion
I Principles; Practice; Recursive sorts; Non-recursive From; Backtracking.

4. Dynamic Programming
I Introduction; Greedy algorithms, Dynamic Programming.

5. Software Correction
I Introduction; Specifying Systems; Hoare Logic; Proving Recursive Functions.

This may change a bit to adapt and improve the class
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Problems

??

Problem

Provided by clients (or teachers ;)

Problems
I Problems are generic

Example: Determine the minimal value of a set of integers

Instances of a problem

I The problem for a given data set

Example: Determine the minimal value of {17, 6, 42, 24}
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Problems and Programs

Software System

?

Problem

Software systems (ie., Programs)

I Describes a set of actions to be achieved in a given order
I Doable (tractable) by computers

Problem Specification

I Must be clear, precise, complete, without ambiguities
Bad example: find position of minimal element (two answers for {4, 2, 5, 2, 42})
Good example: Let L be the set of positions for which the value is minimal.

Find the minimum of L

Using the Right Models

I Need simple models to understand complex artifacts (ex: city map)
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Methodological Principles

?
Specification

Specify

Software SystemProblem

Abstraction think before coding (!)

I Describe how to solve the problem

Divide, Conquer and Glue (top-down approach)

I Divide complex problem into simpler sub-problems (think of Descartes)
I Conquer each of them
I Glue (combine) partial solutions into the big one

Modularity

I Large systems built of components: modules
I Interface between modules allow to mix and match them
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Algorithms

Algorithm

Solve Code

Specification

Specify

Software SystemProblem

Precise description of the resolution process of a well specified problem

I Must be understandable (by human beings)

I Does not depend on target programming language, compiler or machine

I Can be an diagram (as pictured), but difficult for large problems

I Can be written in a simple language (called pseudo-code)

“Formal” definition
I Sequence of actions acting on problem data to induce the expected result
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New to Algorithms?

Not quite, you use them since a long time

Lego bricks� list of pictures
−−−−−−−−−−−−−−−−−−−−−−−−→

Castle

Ikea� desk building instructions
−−−−−−−−−−−−−−−−−−−−−−−−→

Desk

Home location driving directions
−−−−−−−−−−−−−−−−−−−−−−−−→

Party location

Eggs, Wheal, Milk recipe
−−−−−−−−−−−−−−−−−−−−−−−−→

Cake

Two 6-digits integers arithmetic know-how−−−−−−−−−−−−−−−−−−−−−−−−→ sum

And now

List of students sorting algorithm
−−−−−−−−−−−−−−−−−−−−−−−−→

Sorted list

Maze map appropriated algorithm
−−−−−−−−−−−−−−−−−−−−−−−−→

Way out
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Computer Science vs. Software Engineering

Computer science is a science of abstraction – creating the right
model for a problem and devising the appropriate mechanizable
technique to solve it. – Aho and Ullman

NOT (only) Science of Computers

Computer science is not more related to computers than
Astronomy to telescopes. – Dijkstra

I Many concepts were framed and studied before the electronic computer

I To the logicians of the 20’s, a computer was a person with pencil and paper

Science of Computing

I Automated problem solving

I Automated systems that produce solutions

I Methods to develop solution strategies for these systems

I Application areas for automatic problem solving
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Foundations of Computing

Fundamental mathematical and logical structures

I To understand computing

I To analyze and verify the correctness of software and hardware

Main issues of interest in Computer Science
I Calculability

I Given a problem, can we show whether there exist an algorithm solving it?
I Which are the problems for which no algorithm exist? How to categorize them?

I Complexity
I How long does my algorithm need to answer? (as function of input size)
I How much memory does it take?
I Is my algorithm optimal, or does a better one exist?

I Correctness
I Can we be certain that a given algorithm always reaches a solution?
I Can we be certain that a given algorithm always reaches the right solution?
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Software Engineering vs. Computer Science

Producing technical answers to consumers’ needs

Software Engineering Definition

I Study of methods for producing and evaluating software

Life cycle of a software (much more details to come later)

Global
design

design
Detailed

V Cycle
Integration

ValidationSpecification

Coding

Unit testing

I Global design: Identify application modules

I Detailed design: Specify within modules
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As future IT engineers, you need both CS and SE

Without Software Engineering

I Your production will not match consumers’ expectation

I You will induce more bugs and problems than solutions

I Each program will be a pain to develop and to maintain for you

I You won’t be able to work in teams

Without Computer Science

I Your programs will run slowly, deal only with limited data sizes

I You won’t be able to tackle difficult (and thus well paid) issues

I You won’t be able to evaluate the difficulty of a task (and thus its price)

I You will reinvent the wheel (badly)

Two approaches of the same issues

I Correctness: CS ; prove algorithms right; SE ; chase (visible) bugs

I Efficiency: CS ; theoretical bounds on performance, optimality proof;
SE ; optimize execution time and memory usage
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There are always several ways to solve a problem

Choice criteria between algorithms

I Correctness: provides the right answer

I Simplicity: KISS! (jargon acronym for keep it simple, silly)

I Efficiency: fast, use little memory

I Stability: small change in input does not change output

Real problems ain’t easy
I They are not fixed, but dynamic

I Specification helps users understanding the problem better
That is why they often add wanted functionalities after specification

I My text editor is v23.2.1 (hundreds of versions for “just a text editor”)

I They are complex (composed of several interacting entities)

In computing, turning the obvious into the useful is a living
definition of the word ”frustration”.

– ”Epigrams in Programming”, by Alan J. Perlis.
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Dealing with Complexity

Some classical design principles help
I Composition: split problem in simpler sub-problems and compose pieces

I Abstraction: forget about details and focus on important aspects

Object Oriented Programming
I Classical answer to specification complexity and dynamicity Encapsulation,

polymorphism, heritage, . . .

I That’s one way to design applications in a modular manner

I Other approaches exists, but none have the same momentum currently

Rest of this module
I How to write each block / units / objects to be composed in OOP

Why algorithms before OOP and not the contrary?
I Coding at small before programming at large

I (that’s an endless debate, pros and cons for both approaches)
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Dealing with complexity: Composition

Composite structure

I Definition: a software system composed of manageable pieces

, The smaller the component, the easier it is to build and understand

/ The more parts, the more possible interactions there are between parts

⇒ the more complex the resulting structure

I Need to balance between simplicity and interaction minimization

Good example: audio system

Easy to manage because:

I each component has a carefully specified function

I components are easily integrated

I i.e. the speakers are easily connected to the amplifier
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Composition counter-example (1/2)

Rube Goldberg machines

I Device not obvious, modification unthinkable
I Parts lack intrinsic relationship to the solved problem
I Utterly high complexity

Example: Tax collection machine
A. Taxpayer sits on cushion
B. Forcing air through tube
C. Blowing balloon
D. Into candle
E. Explosion scares dog
F. Which pull leash
G. Dropping ball
H. On teeter totter
I. Launch plans
J. Which tilts lever
K. Then Pitcher
L. Pours water on plant

M. Which grows, pulling chain
N. Hand lifts the wallet
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Composition counter-example (2/2)

Rube Goldberg’s toothpaste dispenser

Such over engineered solutions should obviously remain jokes
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Dealing with complexity: Abstraction

Abstraction
I Dealing with components and interactions without worrying about details

I Not “vague” or “imprecise”, but focused on few relevant properties

I Elimination of the irrelevant and amplification of the essential

I Capturing commonality between different things

Abstraction in programming

I Think about what your components should do before

I Ie, abstract their interface before coding

Implementer

contract

User / Client
black box

code

I Show your interface, hide your implementation
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Scala? Why??

Main reason for me: simplicity

I Most of you are absolute beginners to programming

I I want to talk about algorithms, not to bother you about syntax

Scala has much more to offer
I OOP (mixin+singleton), functional, properties, type inference, JVM-based . . .

I But we don’t care for now: see it as a simple language

I You’ll learn its true beauty later on
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Starting Scala

Installation: Get it from http://scala-lang.org/ (version 2.10 at least)

Executing your code

myfile.scala

println("Hello, friends")

Run directly

$ scala myfile.scala
Hello, friends
$

Compile first

$ scalac -Xscript toto myfile.scala
$ scala toto
Hello, friends
$

myscript

#!/usr/bin/scala
!#
println("Hello, friends")

Turn it into a script

$ chmod +x myscript
$ ./myscript
Hello, friends
$

Run interactively

$ scala
Welcome to Scala [...]

scala> println("Hello, friends")
Hello, friends

scala> :load myfile.scala
Loading toto.scala...
Hello, friends
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Getting Started in Scala

Declaring a variable: var x:Int = 0

var ; because that’s a variable
x ; name of that variable (its label)

:Int ; type of this variable (what it can store)
= 0 ; initial value (mandatory)

I You can often omit the type (it’s inferred): var x = 0

Some Scala data types

I Int: for integer values, Double: for dot numbers

I Boolean: true/false, String: "some chars together"

Declaring a value

I If your ”variable” is constant, make it a value: val answer:Int = 42

I Seen as good style in Scala mutable stateful objects are the new spaghetti code

I Allows to detect errors, may produce faster code, easy multithreading.

I Do values unless you must use variables
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The Scala Syntax

Looping

while (condition ) {

instructions

}

do {

instructions

} while (condition )

for (i <- 0 to 10 by 2) {

// i in 0,2,4,6,8,10

}

Methods and functions

def sayIt (msg:String) {

print(msg)

}

def max3 (x:Int, y:Int, z:Int):Int = {

val m = if (x>y) x else y

if (m>z) {

return m

} else {

return z

}

}
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Pattern matching: cascading if / else if are over

name match {

case "Martin" => println("Hey there")

case "Gerald" => println("Hello")

case _ => println("Gnii?")

}

I Veeery powerful construct

I Any expression can be filtered

I The default case is mandatory

name match {

case "Martin" | "Gerald" => println("Hey there")

case _ => println("Gniii?")

}

age match {

case i if i<20 => println("Hey dude!")

case i if i<30 => println("Hello young man")

case _ => println("Hello Sir")

}

(x,y) match {

case (0,0) => println("Origin")

case (_,0) => println("Abscissa")

case (0,_) => println("Ordinate")

case (_,_) => println("Random")

}
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There is much more to Scala
But that’s all you need to know for now. . .
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Comparing Algorithms’ Efficiency

There are always more than one way to solve a problem

Choice criteria between algorithms

I Correctness: provides the right answer

I Simplicity: not Rube Goldberg’s machines

I Efficiency: fast, use little memory

I Stability: small change in input does not change output

Empirical efficiency measurements

I Code the algorithm, benchmark it and use runtime statistics

/ Several factors impact performance:
machine, language, programmer, compiler, compiler’s options, operating system, . . .

⇒ Performance not generic enough for comparison

Mathematical efficiency estimation

I Count amount of basic instruction as function of input size

, Simpler, more generic and often sufficient

(true in theory; in practice, optimization necessary in addition to this)
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Best case, worst case, average analysis

Algorithm running time depends on the data

Example: Linear search in an array
def linearSearch(val:Int, tab:Array[Int]): Boolean = {

for (i <- 0 to tab.length-1)

if (tab(i) == val)

return true;

return false

}

I Case 1: search whether 42 is in {42, 3, 2, 6, 7, 8, 12, 16, 17, 32, 55, 44, 12}
answer found after one step

I Case 2: search whether 4 is in {42, 3, 2, 6, 7, 8, 12, 16, 17, 32, 55, 44, 12}
need to traverse the whole array to decide (n steps)

Counting the instructions to run in each case

I tmin: #instructions for the best case inputs
I tmax : #instructions for the worst case inputs
I tavg : #instructions on average (average of values coefficiented by probability)

tavg = p1t1 + p2t2 + . . .+ pntn
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Linear search runtime analysis
for (i <- 0 to tab.length-1)

if (tab(i) == val)

return true

return false

I For simplicity, let’s assume the value is in the array, positions are equally likely
I Let’s count tests (noted t), additions (noted a) and value changes (noted c)

Best case: searched data in first position

I 1 value change (i=0); 2 tests (loop boundary + equality)

I tmin = c + 2t

Worst case: searched data in last position

I 1 value change (i=0); {2 tests, 1 change, 1 addition (i+=1)} per loop

I tmax = c + n × (2t + 1c + 1a) = (n + 1)× c + 2n × t + n × a

Average case: searched data in position p with probability 1
n

I tavg = c +
∑

p∈[1,n]

1

n
× (2t + c + a)× p = c +

1

n
× (2t + c + a)×

∑
p∈[1,n]

p

tavg = c +
n(n − 1)

2n
× (2t + c + a) = (n − 1)× t +

n + 1

2
× c +

n − 1

2
× a
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Simplifying equations

tavg = (n − 1)× t + n+1
2
× c + n−1

2
× a is too complicated

Reducing amount of variables

I To simplify, we only count the most expensive operations

I But which it is is not always clear...

I Let’s take write accesses c (classical but arbitrary choice)

Focusing on dominant elements

I We can forget about constant parts if there is n operations

I We can forget about linear parts if there is n2 operations

I . . .

I Only consider the most dominant elements when n is very big

⇒ This is called asymptotic complexity
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Asymptotic Complexity: Big-O notation

Mathematical definition
I Let T (n) be a non-negative function

I T (n) ∈ O(f (n)) ⇔ ∃ constants c , n0 so that ∀n > n0, T (n) ≤ c × f (n)

I f(n) is an upper bound of T(n) . . .

. . . after some point, and with a constant multiplier

Application to runtime evaluation

I T (n) ∈ O(n2)⇒ when n is big enough, you need less than n2 steps

I This gives a upper bound

Martin Quinson TOP (2014-2015) Chap 1: Practical and Theoretical Foundations of Programming (36/158)



Big-O examples

Example 1: Simplifying a formula

I Linear search: tavg = (n − 1)× t + n+1
2 × c + n−1

2 × a ⇒ T (n) = O(n)

I Imaginary example: T (n) = 17n2 + 32
17n + π ⇒ T (n) = O(n2)

I If T(n) is constant, we write T(n)=O(1)

Practical usage

I Since this is a upper bound, T (n) = O(n3) is also true when T (n) = O(n2)

I But not as relevant

Example 2: Computing big-O values directly

array initialization
for (i <- 0 to tab.length-1)

tab(i) = 0

I We have n steps, each of them doing a constant amount of work

I T (n) = c × n ⇒ T (n) = O(n)

(don’t bother counting the constant elements)
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Big-Omega notation

Mathematical definition
I Let T (n) be a non-negative function

I T (n) ∈ Ω(f (n)) ⇔ ∃ constants c , n0 so that ∀n > n0, T (n) ≥ c × f (n)

I Similar to Big-O, but gives a lower bound

I Note: similarly to before, we are interested in big lower bounds

Example: T (n) = c1 × n2 + c2 × n

I T (n) = c1 × n2 + c2 × n ≥ c1 × n2 ∀n > 1
T (n) ≥ c × n2 for c > c1

I Thus, T (n) = Ω(n2)
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Theta notation

Mathematical definition
I T (n) ∈ Θ(g(n)) if and only if T (n) ∈ O(g(n)) and T (n) ∈ Ω(g(n))

k

c
1
g(n)

c
2
g(n)

f (n)

Example
n=10 n=1000 n=100000

Θ(n)
n 10 1000 105

seconds
100n 1000 105 107

Θ(n2)
n2 100 106 1010

minutes
100n2 104 108 1012

Θ(n3)
n3 1000 109 1015

hours
100n2 105 1011 1017

Θ(2n)
2n 1024 > 10301 ∞

. . .
100× 2n > 105 10305 ∞

log(n)
log(n) 3.3 9.9 16.6

100 log(n) 332.2 996.5 1661
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Classical mistakes

Mistake notations
I Indeed, we have O(log(n)) = O(n) = O(n2) = O(n3) = O(2n)

Because it’s an upper bound; to be correct we should write ⊂ instead of =

I Likewise, we have Ω(log(n)) = Ω(n) = Ω(n2) = Ω(n3) = Ω(2n)
Because it’s a lower bound; we should write ⊃ instead of =

I We only have Θ(log(n)) 6= Θ(n) 6= Θ(n2) 6= Θ(n3) 6= Θ(2n)

(but in practice, everybody use O() as if it were Θ() – although that’s wrong)

Mistake worst case and upper bounds

I Worst case is the input data leading to the longest operation time

I Upper bound gives indications on increase rate when input size increases

(same distinction between best case and lower bound)
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Asymptotic Complexity in Practice

Rules to compute the complexity of an algorithm

Rule 1: Complexity of a sequence of instruction: Sum of complexity of each

Rule 2: Complexity of basic instructions (test, read/write memory): O(1)

Rule 3: Complexity of if/switch branching: Max of complexities of branches

Rule 4: Complexity of loops: Complexity of content × amount of loop

Rule 5: Complexity of methods: Complexity of content

Simplification rules
I Ignoring the constant:

If f(n) = O(k × g(n)) and k > 0 is constant then f(n) = O(g(n))

I Transitivity

If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n))

I Adding big-Os

If A(n) = O(f(n)) and B(n) = O(g(n)) then A(n)+B(n) = O(max(f(n), g(n)))
= O(f(n)+g(n))

I Multiplying big-Os

If A(n) = O(f(n)) and B(n) = O(h(n)) then A(n)× B(n) = O(f (n)× g(n))
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Some examples

Example 1: a=b; ⇒ Θ(1) (constant time)

Example 2 var sum=0;

for (i <- 1 to n)

sum += n;

Θ(n)

Example 3 var sum=0;

for (i <- 1 to n)

for (j <- 1 to n)

sum += 1

for (k <- 0 to n-1)

A(k) = k;

Θ(1) + Θ(n2) + Θ(n) =
Θ(n2)

Example 4 var sum=0;

for (i <- 1 to n)

for (j <- 1 to i)

sum += 1

Θ(1) + O(n2) = O(n2)
one can also show Θ(n2)

Example 5 var sum=0; var i=0

while (i<n) {

sum +=1

i = i * 2

}

Θ(log(n)) log is due to
the i × 2
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Going further on Algorithm Complexity

Problems’ Classification
I Problems can also be sorted in class of complexities (not only algorithms)

depending on the best existing algorithm to solve them

I Showing that no better algorithm exist for a given problem: Calculability

I Multi-million question: P=NP?

P: polynomial algorithm to find the solution exists
NP: candidate solution eval. in polynomial time, but no known polynomial algo

NP-complete: set of NP problems for which if one P algorithm is found,
it’s applicable to every other NP-complete problems

Time is not the only metric of interest: Space too
I In computation, there is a sort of tradeoff between space and time

Faster algorithms need to pre-compute elements . . . requiring more storage memory

So does Energy nowadays!
I Computational power of CPU grows linearly with frequency;

Energy consumption grows (more than) quadratically with frequency

I To save energy (and money), split your task on several slower cores
Parallel algorithms are the way to go (but it’s ways harder)
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Algorithmic stability

Computers use fixed precision numbers

I 10+1=11

I 1010 + 1 = 10000000001

I 1016 + 1 = 10000000000000001

I 1017 + 1 = 100000000000000000 = 1017

What is the value of
√

22?
I Old computers though it was 1.9999999

Other example
while (value < 2E9)

value += 1E-8;

This is an infinite loop
(because when value = 109, value + 10−8 = value)

Numerical instabilities are to be killed to predict weather,
simulate a car crash or control a nuclear power plant

(but this is all ways beyond our goal this year ;)
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Conclusion of this chapter

What tech guys tend to do when submitted a problem
I They code it directly, and rewrite everything once they understood
I And rewrite everything to improve performance
I And rewrite everything when the code needs to evolve

What managers tend to do when submitted a problem
I They write up a long and verbose specification
I They struggle with the compiler in vain
I Then they pay a tech guy (and pay too much since they don’t get the grasp)

What theoreticians tend to do when submitted a problem
I They write a terse but formal specification
I They write an algorithm, and prove its optimality

(the algorithm never gets coded)

What good programmers do when submitted a problem
I They write a clear specification
I They come up with a clean design
I They devise efficient data structures and algorithms
I Then (and only then), they write a clean and efficient code
I They ensure that the program does what it is supposed to do
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Choice criteria between algorithms

Correctness
I Provides the right answer
I This crucial issue is delayed a bit further

Simplicity

I Keep it simple, silly
I Simple programs can evolve (problems and client’s wishes often do)
I Rube Goldberg’s machines cannot evolve

Efficiency

I Run fast, use little memory, dissipate little energy
I Asymptotic complexity must remain polynomial
I Note that you cannot have a decent complexity with the wrong data structure
I You still want to test the actual performance of your code in practice

Numerical stability

I Small change in input does not change output
I Advanced issue, critical for numerical simulations (but beyond our scope)

Martin Quinson TOP (2014-2015) Chap 1: Practical and Theoretical Foundations of Programming (47/158)



Second Chapter

Iterative Sorting Algorithms

Problem Specification

Selection Sort
Presentation
Discussion

Insertion Sort
Presentation

Bubble Sort
Presentation

Conclusion



Sorting Problem Specification

Input data

I A sequence of N comparable items < a1, a2, a3, . . . , aN >
I Items are comparable iff ∀a, b in set, either a < b or a > b or a = b

Result
I Permutation2 < a′1, a

′
2, a
′
3, . . . , a

′
N > so that: a′1 ≤ a′2 ≤ a′3 ≤ . . . ≤ a′N

Sorting complex items

I For example, if items represent students, they encompass name, class, grade
I Key: value used for the sort
I Extra data: other data associated to items, permuted along with the keys

Problem simplification

I We assume that items are chars or integers to be sorted in ascending order
(no loss of generality)

Memory consideration

I Sort in place, without any auxiliary array. Memory complexity: O(1)

2reordering
Martin Quinson TOP (2014-2015) Chap 2: Iterative Sorting Algorithms (49/158)



Selection Sort

Big lines

I First get the smallest value, and put it in first position

I Then get the second smallest value, and put it in second position

I and so on for all values

Example:

O R UD E N TS

O R UD E N TS

O R UD E N TS

SR TONED U

O R T UD E SN

O R T UD E SN

S O R T UD NE

N S O R T E UD

U N S O R T E D

PseudoScala code

/* for each element, do: */
for (i <- 0 to length-1) {

/* (1) search min on [i;N] */
var minpos=i
for (j <- i to length-1) {/* ∀j ∈ [i ; length − 1] */

if (tab(j) < tab(minpos)) {
minpos = j

}
}

/* (2) put min first */
temp=tab(i)
tab(i)=tab(minpos)
tab(minpos)=temp

}
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Selection sort discussion

We apply a very generic approach here:

I Do right now what you can, delay the rest for later (put min first)

I Progressively converge to what you are looking for (sort the remaining)

for (i <- 0 to length-1) {
var minpos=i
for (j <- i to length-1) {

if (tab(j) < tab(minpos)) {
minpos = j

}
}
temp=tab(i)
tab(i)=tab(minpos)
tab(minpos)=temp

}

Memory Analysis

I 2 extra variables
(only one at the same time, actually)

⇒ Constant amount of extra memory

⇒ Space complexity is O(1)

I O(1) is the smallest complexity ; Θ(1)

Time Analysis

I Forget about constant times, focus on loops!

I Two interleaved loops which length is at most N

⇒ Time complexity is O(N2)
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Finer analysis of selection sort’s time performance

for (i <- 0 to length-1) {
var minpos=i
for (j <- i to length-1)

if (tab(j) < tab(minpos))
minpos = j

temp=tab(i)
tab(i)=tab(minpos)
tab(minpos)=temp

}

Best case, worst case, average case

I No matter the order of the data,
’selection sort’ does the same

⇒ tmin = tmax = tavg

Counting steps more precisely (but only dominant term)

I T (N) =
∑

i∈[1,N]

 ∑
j∈[i,N[

1

 =
∑

i∈[1,N]

(N − i) =
∑

i∈[1,N]

N −
∑

i∈[1,N]

i

= N2 − N×(N+1)
2 = N2 − N2+N

2 = 1
2N

2 − 1
2N = 1

2 (N2 − N)

I Let’s prove that T (n) ∈ Ω(n2). For that, we want:

I ∃c , n0/∀N > n0,
1
2 (N2 − N) ≥ cN2 ⇐ N2 − N ≥ 2cN2 ⇐ N − 1 ≥ 2cN

I So, we want ∃c , n0/∀N > n0,N ≥ 1
1−2c

I Let’s take anything for c ( 6= 1
2 ), and n0 = 1

1−2c . Trivially gives what we want.

T (n) ∈ Θ(n2)
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Insertion Sort

How do you sort your card deck?

I No human would apply selection sort to sort a deck!

Algorithm used most of the time to sort a card deck:

1. If the cards #1 and #2 need to be swapped, do it
2. Insert card #3 at its position in the [1,2] part of the deck
3. Insert card #4 at its position in the [1,3] part of the deck

. . .

Finding the common pattern

I Step n (≥ 2) is “insert card #(n+1) into [1,n]”
I Step 1 = insert the 2. card into [1,1]
I We may add a Step 0 to generalize the pattern

(that’s a no-op)

Algorithm big lines
For each element

Find insertion position
Move element to position

This is Insertion Sort
U N S O R T E D

U N S O R T E D

DETROSUN

E DTROUSN

DETRUSON

DEUSR TON

E DO R S T UN

DE O R S T UN

D E O R S T UN
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Writing the insertion sort algorithm

Fleshing the big lines
For each element

Find insertion point
Move element to position

I Finding the insertion point is easy (searching loop)

I Moving to position is a bit harder: “make room”

I We have to shift elements one after the other

step 4. ON S U R T E D tmp

E DTRN tmp OUSstep 3.

step 2. U R T E D tmp ON S

E DTRUSN tmp Ostep 1.

10 2 3 4 5 76

E DTROUSN

DETRUSON

Before:

After:

I Shifting elements induce a loop also
I We can do both searching insertion point and shifting at the same time

for (i <- 1 to length-1) {/* i: boundary between unsorted/sorted areas*/
/* save current value (it this case, that’s O) */
val tmp = tab(i)
/* shift to right any element on the left being smaller than tmp */
var j = i
while (j>0 && tab(j-1)>tmp) {/* while previous cell exists and is bigger */

tab(j) = tab(j-1) /* copy that element */
j = j -1 /* consider the next element */

}
/* put tmp in cleared position */
tab(j)=tmp

}
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Bubble Sort

I All these sort algorithms are quite difficult to write. Can we do simpler?

I Like “while it’s not sorted, sort it a bit”

Detecting that it’s sorted

for (i <- 0 to length-2)
/* if these two values are badly sorted */
if (tab(i)>tab(i+1))

return false
return true

How to “sort a bit?”
I We may just swap these two values

val tmp=tab(i)
tab(i)=tab(i+1)
tab(i+1)=tmp

All together

I Add boolean variable to
check whether it sorted

var swapped = true
while (swapped) { /* until we do one traversal without swap */

swapped = false
for (i <- 0 to length-2)

if (tab(i) > tab(i+1)) { /* if these 2 values are badly sorted */
/* swap them */
val tmp = tab(i)
tab(i) = tab(i+1)
tab(i+1) = tmp
/* and remember we swapped something */
swapped = true
}

} /* repeat until a traversal without swapping */
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Conclusion on Iterative Sorting Algorithms

Cost Theoretical Analysis

Amount of comparisons Best Case Average Case Worst Case
Selection Sort O(n2) O(n2) O(n2)
Insertion Sort O(n) O(n2) O(n2)
Bubble Sort O(n) O(n2) O(n2)

Which is the best in practice?

I We will explore practical performance during the lab

I But in practice, bubble sort is awfully slow and should never be used

Is it optimal?

I The lower bound is Ω(n log(n)) – cf. TD lab

I Some other algorithms achieve it (Quick Sort, Merge Sort)

I We come back on these next week

(this ends the first lecture)
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Divide & Conquer

Classical Algorithmic Pattern

I When the problem is too complex to be solved directly, decompose it

When/How is it applicable?

1. Divide: Decompose problem into (simpler/smaller) sub-problems

2. Conquer: Solve sub-problems

3. Glue: Combine solutions of sub-problems to a solution as a whole

S

P

P

S

P

P5P4P3P2P1

S1

S

S5S4S3S2

S

S

S

S

S

S

P

P

P

P

P

P

P1

S1

S11

P11 P12

S12 S21

P21 P22

P2

S2

S22

You don’t have to see the whole staircase, just take the first step.
– Martin Luther King
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Recursion

Divide & Conquer + sub-problems similar to big one

Recursive object

I Defined using itself

I Examples:
I U(n) = 3× U(n − 1) + 1 ; U(0) = 1
I Char string = either a char followed by a string, or empty string

I Often possible to rewrite the object, in a non-recursive way (said iterative way)

Base case(s)

I Trivial cases that can be solved directly

I Avoids infinite loop
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When the base case is missing. . .

There’s a Hole in the Bucket (traditional)
There’s a hole in the bucket, dear Liza, a hole.
So fix it dear Henry, dear Henry, fix it.
With what should I fix it, dear Liza, with what?
With straw, dear Henry, dear Henry, with straw.
The straw is too long, dear Liza, too long.
So cut it dear Henry, dear Henry, cut it!
With what should I cut it, dear Liza, with what?
Use the hatchet, dear Henry, the hatchet.
The hatchet’s too dull, dear Liza, too dull.
So sharpen it dear Henry, dear Henry, sharpen it!
With what should I sharpen, dear Liza, with what?
Use the stone, dear Henry, dear Henry, the stone.
The stone is too dry, dear Liza, too dry.
So wet it dear Henry, dear Henry, wet it.
With what should I wet it, dear Liza, with what?
With water, dear Henry, dear Henry, water.
With what should I carry it dear Liza, with what?
Use the bucket, dear Henry, dear Henry, the bucket!

There’s a hole in the bucket, dear Liza, a hole.

Classical Aphorism
To understand recursion,
you first have to understand recursion

Recursive Acronyms

I GNU is Not Unix

I PHP: Hypertext Preprocessor

I PNG’s Not GIF

I Wine Is Not an Emulator

I Visa International Service Association

I Hird of Unix-Replacing Daemons

Hurd of Interfaces Representing Depth

I Your Own Personal YOPY

This is naturally to be avoided in algorithms
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In Mathematics: Natural Numbers and Induction

Peano postulates (1880)

Defines the set of natural integers N
1. 0 is a natural number

2. If n is natural, its successor (noted n + 1) also

3. There is no number x so that x + 1 = 0

4. Distinct numbers have distinct successors (x 6= y ⇔ x + 1 6= y + 1)

5. If a property holds (i) for 0 (ii) for each number’s successor,
it then holds for any number

Proof by Induction

I One shows that the property holds for 0 (or other base case)

I One shows that when it holds for n, it then holds for n + 1

I This shows that it holds for any number
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In Computer Science

Two twin notions
I Functions and procedures defined recursively (generative recursion)

I Data structures defined recursively (structural recursion)

Naturally, recursive functions are well fitted to recursive data structures

This is an algorithm characteristic

I No problem is intrinsically recursive

I Some problems easier or more natural to solve recursively

I Every recursive algorithm can be derecursived
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Recursive Functions and Procedures
Recursively Defined Function: its body contains calls to itself

The Scrabble� word game

I Given 7 letter tiles, one should form existing English worlds

T I R N E G S ; RIG, SIRE, GRINS, INSERT, RESTING, . . .

I How many permutation exist?
I First position: pick one tile from 7
I Second position: pick one tile from 6 remaining
I Third position: pick one tile from 5 remaining
I ...
I Total: 7× 6× 5× 4× 3× 2× 1

This is the Factorial

I Mathematical definition of factorial:

{
n! = n × (n − 1)!
0! = 1

I Factorial : integer → integer
Precondition: factorial(n) defined if and only if n ≥ 0
Postcondition: factorial(n)= n!
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Recursive Algorithm for Factorial

Literal Translation of the Mathematical Definition

factorial(n):
if n = 0 then r ← 1

else r ← n × factorial(n − 1)
end

Remarks:

I r ← 1 is the base case: no recursive call

I r ← n × factorial(n − 1) is the general case: Achieves a recursive call

I Reaching the base case is mandatory for the algorithm to finish
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Factorial Computation Details
factorial(n):

if n = 0 then r ← 1
else r ← n × factorial(n − 1)

end

factorial(4) = 4× factorial(3)︷ ︸︸ ︷
3× factorial(2)︷ ︸︸ ︷

2× factorial(1)︷ ︸︸ ︷
1× factorial(0)


Recursive Descent

4× 3× 2× 1×
︷︸︸︷

1

}
Base Case

4× 3× 2×
︷ ︸︸ ︷

1

4× 3×
︷ ︸︸ ︷

2

4×
︷ ︸︸ ︷

6︷ ︸︸ ︷
24


Recursive Climb

factorial(4) = 24
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General Recursion Schema

if Cond then BaseCase
else GenCase

end

I Cond is a boolean expression

I If Cond is true, execute the base case BaseCase (without recursive call)

I If Cond is false, execute the general case GenCase (with recursive calls)

The factorial(n) example

BaseCase: r ← 1

GenCase: r ← n × factorial(n − 1)
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Other Recursion Schema: Multiple Recursion

More than one recursive call

Example: Pascal’s Rule and (nk)

I Amount of k-long sets of n elements (order ignored)

(nk) =

{
1 if k = 0 or n = k;(

n−1
k

)
+
(
n−1
k−1

)
else (1 ≤ k < n).

I
(

4
2

)
= 6 ; 6 ways to build a pair of elements picked from 4 possibilities:

{A;B},{A;C},{A;D},{B;C},{B;D},{C;D} (if order matters, 4× 3 possibilities)

Corresponding Algorithm:

Pascal (n, k)

If k = 0 or k = n then r ← 1
else r ← Pascal (n − 1, k) +

Pascal (n − 1, k − 1)

First rows
1

1 1

1 2 1

1 3 3 1

1 4 (6) 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1
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Other Recursion Schema: Mutual Recursion

Several functions calling each other

Example 1

A(n) =

{
1 if n ≤ 1

B(n + 2) if n > 1
B(n) =

{
1 if n ≤ 1

A(n − 3) + 4 if n > 1

Compute A(5):

Example 2: one definition of parity

even?(n) =

{
true if n = 0

odd(n − 1) else
and odd?(n) =

{
false if n = 0

even(n − 1) else

Other examples

I Some Maze Traversal Algorithm also use Mutual Recursion (see lab)

I Mutual Recursion classical in Context-free Grammar (see compilation course)
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Other Recursion Schema: Embedded Recursion

Recursive call as Parameter

Example: Ackerman function

A(m, n) =

 n + 1 if m = 0
A(m − 1, 1) if m > 0 and n = 0

A(m − 1,A(m, n − 1)) else

Thus the algorithm:
Ackerman(m, n)

if m = 0 then n + 1
else if n = 0 then Ackerman(m − 1, 1)

else Ackerman(m − 1, Ackerman(m, n − 1))

Warning, this function grows quickly:
Ack(1, n) = n + 2 Ack(2, n) = 2n + 3

Ack(3, n) = 8 · 2n − 3 Ack(4, n) = 22
2...

2
}
n

Ack(4, 4) > 265536 > 1080 (estimated amount of particles in universe)
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Recursive Data Structures

Definition

Recursive datatype: Datatype defined using itself

Classical examples

List: element followed by a list or empty list

Binary tree: {value; left son; right son} or empty tree

This is the subject of the module “Data Structures”

I After TOP and POO in track
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Example: Strings as (linked) lists

Defined operations
[ ] The empty string object
cons Char × String 7→ String Adds the char in front of the list
car String 7→ Char Get the first char of the list

(not defined if empty?(str))

cdr String 7→ String Get the list without first char
empty? String 7→ Boolean Tests if the string is empty

I As you can see, strings are defined recursively using strings

Examples

I “bo” = cons(’b’,cons(’o’,[ ]))

I “hello” = cons(’h’,cons(’e’,cons(’l’,cons(cons(’l’,cons(cons(’o’,[ ])))))))

I cdr(cons(’b’,cons(’o’,[ ]))) = “o” = cons(’o’,[ ])

These are native constructs in LISP programing language
I But, these constructs are hard to remember (cdr vs. car)

I But, all these parenthesis are nasty (too much syntaxic sugar)
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Doing the same in Java

Element Class representing a letter and the string following (ie, non-empty strings)
String Class representing a string (either empty or not)

public class Element {
public char value;
public Element tail;

Element(char x, Element tail) {
value = x;
this.tail = tail;

}
}

public class StringRec {
private Element head = null;

public boolean isEmpty() {
return head == null;

}
public void cons(char x) {

// Create new elem and connect it
Element newElem = new Element(x, head);
// This is new head
head = newElem;

} }

StringRec plop = new StringRec().cons(’p’).cons(’o’).cons(’l’).cons(’p’);

Object Orientation is helping (only) when programming at large
I It’s “not really helping” when programming at small (both are orthogonal)

I Here, message lost under the syntaxic sugar

I Dotted notation not natural in this case (this could be improved? mail me!)
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Some Memory Representation Examples in Java

Empty String: new StringRec();

String
head

String “plop”: new StringRec().cons(’p’).cons(’o’).cons(’l’).cons(’p’);

p l o p

String ElementElement Element Element

rest
head value

String “toto”: : new StringRec().cons(’o’).cons(’t’).cons(’o’).cons(’t’);

t o t o

String ElementElement Element Element

rest
head value
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Scala Lists

Nil The empty list object
:: elm × List 7→ List Adds the element in front of the list (pronounced cons)

head List 7→ elm Get the first char of the list (not defined if lst.isEmpty)

tail List 7→ List Get the list without first char
isEmpty List 7→ Boolean Tests if the list is empty

Example: “hello” ≡ ’h’::’e’::’l’::’l’::’o’::Nil

scala> val lst = 1::2::3::4::Nil
lst: List[Int] = List(1, 2, 3, 4)

scala> lst.head
res1: Int = 1

scala> lst.tail
res2: List[Int] = List(2, 3, 4)

scala> def sum(list:List[Int]): Int = list match {
| case Nil => 0
| case i::newlist => i + sum(newlist)
| }

sum: (list: List[Int])Int

scala> lst.sum
res3: Int = 10

Functional orientation of Scala is a beauty
I Is is much more convenient than LISP, syntaxic-sugar-free compared to Java

I Plays very well with Scala’s pattern-matching
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Recursion in Practice

Recursion is a tremendously important tool in algorithmic

I Recursive algorithms often simple to understand, but hard to come up with

I Some learners even have a trust issue with regard to recursive algorithms

Holistic and Reductionist Points Of View
I Holism: the whole is greater than the sum of its parts

I Reductionism: the whole can be understood completely if you understand
its parts and the nature of their ‘sum’.

Writing a recursive algorithm

I Reductionism clearly induced since views problems as sum of parts

I But Holistic approach also mandatory:
I When looking for general solution, assume that solution to subproblems given
I Don’t focus of every detail, keep a general point of view (not always natural, but)

If you cannot see the forest out of trees, don’t look at branches and leaves

I At the end, recursion is something that you can only learn through experience
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How to Solve a Problem Recursively?

1. Determine the parameter on which recursion will operate:
Integer or Recursive datatype

2. Solve simple cases: the ones for which we get the answer directly
They are the Base Cases

3. Setup Recursion:
I Assume you know to solve the problem for one (or several) parameter value

being strictly smaller (ordering to specify) than the value you got
I How to solve the problem for the value you got with that knowledge?

4. Write the general case
Express the searched solution as a function of the sub-solution you assume you know

5. Write Stopping Conditions (ie, base cases)
Check that your recursion always reaches these values
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A Classical Recursive Problem: Hanöı Towers

B CA

B CA

?

I Data: n disks of differing sizes

I Problem: change the stack location

A third stick is available

I Constraint: no big disk over small one

Martin Quinson TOP (2014-2015) Chap 3: Recursion (80/158)



Problem Analysis

I Parameters :
I Amount n of disks stacked on initial stick
I The sticks

; We recurse on integer n

I How to solve problem for n disks when we know how to do with n − 1 disks?

; Decomposition between bigger disk and (n-1) smaller ones

I We want to write procedure Hanoi(n, From, To).
It moves the n disks from stick From to stick To

; For simplicity sake, we introduce procedure Move(From,To)
It moves the upper disk from stick From to stick To

(also checks that we don’t move a big one over a small one)

I Stopping Condition: when only one disk remains, use Move
Hanoi(1,x,y)=Move(x,y)
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Possible Decomposition of Hanoi(n, A, C)

B CA

Ask ”your friend” again
Hanoi(n-1, B, C)

B CA

Move(a,c)B CA

Hanoi(n-1, A, B)
move N-1 disks for you
Assume ”someone” can

B CA

?

Do you feel the trust issue against recursive algorithms?

To iterate is human, to recurse is divine. — L Peter Deutsch

(Deutsch: ghostview; first JIT compiler (for SmallTalk) 15 yr ahead; wrote LISP interpreter for PDP-1 by 12yr)
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Corresponding Algorithm

Function hanoi (n, from, to, other) is
if n = 1 then

move (from, to)
else

hanoi (n-1, from, other)
move (from, to)
hanoi (n-1, other, to)

def hanoi(n:Int, from:Int,to:Int,other:Int)=
if (n == 1) {

move(from, to)
} else {

hanoi(n-1, from, other, to)
move(from, to)
hanoi(n-1, other, to, from)

}

Variant with 0 as base case

Function hanoi (n, from, to, other) is
if n 6= 0 then

hanoi (n-1, from, other, to)
move (from, to)
hanoi (n-1, other, to, from)

def hanoi(n:Int, from:Int,to:Int,other:Int)=
if (n != 0) {

hanoi(n-1, from, other, to)
move(from, to)
hanoi(n-1, other, to, from)

}
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Back on the Hanoi Towers Problem

Problem first introduced in 1883 by Eduard Lucas, with a fake story

I Somewhere in India, Brahmane monks are doing this with 64 gold disks

I When they will be done, there will be the end of time

Anecdote Main Interest
I Amount of moves mandatory to move n disks: 1, 3, 7, 15, 31, 63, . . .

I General term: 2n − 1

I The monks need 264 − 1 (ie 18 446 744 073 709 551 615) moves

I That’s almost 600 000 000 000 years by playing one move per second

Other funny usage of the 2n − 1 suite

I Fibonacci searched the minimal amount of masses to weight any value up to N

I Tartaglia solution when masses are on the same arm:
With n masses in the suite (1, 2, 4, 8, . . . ) you can weight any values up to 2n − 1

I Mathematicians: specialists of pointless stories leading to fundamental tools

[The Penguin Dictionary of Curious and Interesting Numbers, David Wells, 1997]
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Classical Recursive Function: Fibonacci

Study of reproduction speed of rabbits (XII century)

I One pair at the beginning

I Each pair of fertile rabbits produces a new pair of offspring each month

I Rabbits become fertile in their second month of life

I Old rabbits never die

I F0 = 0 ; F1 = 1 ; F2 = 1 ; F3 = 2 ; F4 = 3 ; F5 = 5 ; F6 = 8 ; F7 = 13 ; . . . F0 = 0
F1 = 1
∀n,Fn = Fn−1 + Fn−2

Exercice :

Compute amount of recursive calls

Corresponding Code

def fib(n:Int):Int =
if (n <= 1)

n // Base Case (’return’ is optional)
else

fib(n-1) + fib(n-2)

(efficient implementations exist)

fib(2)

fib(0)fib(1)fib(2)

fib(0)fib(1)

fib(1)

fib(3)

fib(4)
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Classical Recursive Function: McCarthy 91

Definition

M(n) =

{
n − 10 if n > 100
M(M(n + 11)) if n ≤ 100

Interesting Property:
∀n ≤ 101,M(n) = 91
∀n > 101,M(n) = n − 10

Proof
I When 90 ≤ k ≤ 100, we have f (k) = f (f (k + 11)) = f (k + 1)

In particular, f (91) = f (92) = . . . = f (101) = 91

I When k ≤ 90: Let r be so that: 90 ≤ k + 11r ≤ 100
f (k) = f (f (k + 11)) = . . . = f (r+1)(k + 11r) = f (r+1)(91) = 91

John McCarthy (1927- )
Turing Award 1971, Inventor of language LISP, of expression “Artificial
Intelligence” and of the Service Provider idea (back in 1961).

Martin Quinson TOP (2014-2015) Chap 3: Recursion (87/158)



Classical Recursive Function: Syracuse

Function syracuse (n)
if n = 0 or n = 1 then

1
else if n mod 2 = 0 then

syracuse(n/2)
else

syracuse(3× n + 1)

I Question: Does this function always terminate?

Hard to say: suite is not monotone

I Collatz’s Conjecture: ∀n ∈ N, syracuse(n) = 1

I Checked on computer ∀n < 5 · 260 ≈ 6 · 1018

(but other conjectures were proved false for bigger values only)

I This is an open problem since 1937 (some rewards available)

Mathematics is not yet ready for such problems.
– Paul Erdös (1913–1996)
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Back on Sorting Algorithms

Why don’t CS profs ever stop talking about sorting?!

Sorting is the best studied problem in CS

I Variety of different algorithms (cf. PLM’s lab for a small subset)

I Still some research on that topic (find best algorithm for a given workload kind)

Several Interesting ideas can be taught in that context

I Complexity: best case/worst case/average case as well as Big Oh notations

I Divide and Conquer and Recursion

I Randomized Algorithms

Sorting is a fundamental building block of algorithms

I Computers spend more time sorting than anything else (25% on mainframes)

I This is because a lot of problems come down to sorting elements
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Applications of Sorting (1)

Searching

I Binary search algorithm: search item in dictionnary (sorted list) in O(log(n))

I Speeding up searching perhaps the most important application of sorting

Closest pair

I Given n numbers, find the pair which are closest to each other

I Once the list is sorted, closest elements are next to each other

⇒ Linear scan is enough, thus O(n log(n)) + O(n) = O(n log(n))

Element uniqueness

I Given a list of n items, are they all unique or are there duplicates?

I Sort them, and do a linear scan of adjacent pairs

I (special case of closest pair, actually)
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Applications of Sorting (2)

Frequency distribution

I Given a list of n items, which occures the largest number of times?

I Sort them, and do a linear scan to measure the length of adjacent runs

Median and Selection
I What is the kth largest item of a set?

I Sort keys, store them in an array (deal with dups)

I The kth larger can be found in constant time in kth pos of the array
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Applications of Sorting (3)

Convex Hulls
I Given n points, find the smallest polygon containing them all

(think of a elastic band stretched over the points)

I Sort points by x-coordinate, then y-coordinate

I Add them from left to right into the hull:
I New rightmost point is on the boundary
I Adding point to boundary may cause others to be deleted

depending on whether the angle is convex or not

Huffman codes
I When storing a text, giving each letter’s code the same length wastes space

I Example: e is more common than q, so give it a shorter code

I Huffman encoding: Sort letters by frequency, assign codes in order

Char Freq. Code
f 5 1100
e 6 1101
c 12 100

Char Freq. Code
b 13 101
d 16 111
a 45 0

I Simple & fast

I Not best compression

I Used in JPEG and MP3
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Merge Sort

Recursive sorting

I Imagine the simpler way to sort recursively a list

1. Split your list in two sub-lists
One idea is to split evenly, but not the only one

2. Sort each of them recursively
(base case: size≤1)

3. Merge sorted sublists back
at each step, pick smallest remaining elements of sublists, put it after already picked

Merge Sort

I List splited evenly

I Sub-list copied away

I Merge trivial

(invented by John von Neumann in 1945)

ONU S R T DE

U N S O R T E D

U N S O R T E D

N U O S R T D E

N O S U D E R T

DETROSNU

D E O R S T UN
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Merge Sort

Scala code
def mergeSort(m: List[Int]):List[Int] ={

// short enought to be already sorted
if (m.length <= 1)

return m

// Slice (=cut) the array in two parts
val middle = m.length / 2
val left = m.slice(0,middle)
val right = m.slice(middle,m.length)

// Sort each parts
val leftSorted = mergeSort(left)
val rightSorted = mergeSort(right)

// Merge them back
return merge(leftSorted, rightSorted)

}

def merge(xs:List[Int], ys:List[Int])
:List[Int] = {

(xs,ys) match {

case ( _ , Nil) => xs
case (Nil, _ ) => ys

case (x::x2, y::y2) =>
if (x < y) {

x :: merge(x2 , ys)
} else {

y :: merge(xs , y2)
}

}
}

Complexity Analysis

I Time: log(n) recursive calls, each of them being linear ; Θ(n × log(n))

I Space: Need to copy the array ; 2n (quite annoying) + log(n) for the stack
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QuickSort

Presentation
I Invented by C.A.R. Hoare in 1962

I Widely used (in C library for example)

Big lines

I Pick one element, called pivot (random is ok)

I Reorder elements so that:
I elements smaller to the pivot are before it
I elements larger to the pivot are after it

I Recursively sort the parts before and after the pivot

Questions to answer
I How to pick the pivot? (random is ok)

I How to reorder the elements?
I First solution: build sub-list (but this requires extra space)
I Other solution: invert in place (but hinders stability, see below)
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Simple Quick Sort

It’s easy with sub-lists:

I Create two empty list variables

I Iterate over the original list;
copy elements in correct sublist

I Recurse

I Concatenate results

def quicksort(lst:List[Int]):List[Int] = {
if (lst.length <= 1) // Base case

return lst

// Randomly pick a pivot value
val pivot = lst(lst.length / 2)

// split the list
var lows: List[Int] = Nil
var mids: List[Int] = Nil
var highs: List[Int] = Nil
for (item <- lst) { // classify the items

if ( item == pivot) { mids = item :: mids }
else if (item < pivot) { lows = item :: lows }
else { highs = item :: highs}

}

// return sorted list appending chunks
quicksort(lows) ::: mids ::: quicksort(highs)

}

Problem
I Space complexity is about 2n + log(n))...

(2n for array duplication, log(n) for the recursion stack)
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In-place Quick Sort
Big lines of the list reordering

I Put the pivot at the end

I Traverse the list
I If visited element is larger, do nothing
I Else swap with “storage point”

+ shift storage right
(storage point is on left initially)

I Swap pivot with storage point

4

4

5 2 1 5 47 8 9

3 2 1 57 8 9 5

3 2 1 58 9 5

3 2 1 57 9 548

3

3 2 1 57 8 9 54

3 59 54 82 1 7

3 94 2 1 5 85 7

3 1 59 54 7 82

3 59 54 82 1 7

3 9 54 2 1 75 8

3 2 1 58 9 54 7

7

def quicksort(array:Array[Int]) {
def lambda(array:Array[Int], left:Int, right:Int, pivotIndex:Int) {

val pivotValue = array(pivotIndex)
array.swap(pivotIndex, right) // Move pivot to end (swap() does not exist)
val storeIndex = left
for (i <- left to right-1) {

if (array(i) <= pivotValue) {
array.swap(i, storeIndex)
storeIndex = storeIndex + 1

} }
array.swap(storeIndex, right) // Move pivot to its final place
lambda(array, left, pivotIndex, (pivotIndex-left)/2)
lambda(array, pivotIndex, right, (right-pivotIndex)/2)

}
lambda(array, 0, array.length-1, array.length/2) }
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In-place QuickSort Complexity (1/2)

Best case for divide-and-conquer algorithms: Even Split

I Split the amount of work by 2 at each step (thus Θ(log(n)) recursive calls)

I Work on each subproblem linear with its size (thus each call in Θ(n))

The recursion tree for best case:

What if we split 1%/99% at each step (instead of 50%/50%)?

I We get 100× log(n) steps ; whole algorithm in Θ(n log(n))
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In-place QuickSort Complexity (2/2)

What if we have a fixed amount on one side?
I (happens when every values are duplicated, or with the wrong pivot)

I We get O(n) steps ; whole algorithm in O(n2) in worst case

That’s a fairly bad worst case time

I Worst than MergeSort, for example

I But called Quicksort anyway because faster in practice than MergeSort

I In-Place version of both algorithms are not stable

I Both can be quite easily parallelized

I Space complexity: O(log(n)) (to store the recursion stack)

(this ends the second lecture)
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Sorting Algorithm Performance Discussion

We have shown that
Amount of comparisons Memory

Best Case Average Case Worst Case Complexity
Selection Sort O(n2) O(n2) O(n2) Θ(1)
Insertion Sort O(n) O(n2) O(n2) Θ(1)
Bubble Sort O(n) O(n2) O(n2) Θ(1)

Quick Sort O(n log(n)) O(n log(n)) O(n2) O(log(n))
Merge Sort O(n log(n)) O(n log(n)) O(n log(n)) O(n)

I Very accurate knowledge on achieved performance

But wait a second. . .

How do you know this code actually sorts the array?

I Because you see it, it’s obvious (yeah, right. . . )

I Because the teacher / a friend says so

I Because it’s written in a book / on the Internet

I Because you tested it
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Because it’s obvious you said?

Let’s consider the following problem

I You have a robot arm equipped with a soldering iron (for example)

I You have several positions were the arm should do its soldering job

I You must decide the order in which the arm visit the positions

I You want to minimize the time (ie travel distance) it takes to visit all positions
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Nearest Neighbor Tour

Here is a very popular algorithm to that problem

I Pick and visit an initial point p0, and let i = 0

I While there are still unvisited points
I i = i + 1
I let pi be the closest unvisited point to pi−1

I Visit pi

I Return to p0 from pi

Advantage of that algorithm

I It is simple to understand and implement; It’s very efficient: O(n)

But it is not correct!

Correct

Given by this algorithm

−21 −5 −1 0 1 3 11

Choosing carefully p0

(left-most or whatever)
will not help
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Closest Pair Tour

Let’s try to fix our algorithm

I Walking to the closest point seems too restrictive: traps into unwanted moves

I Let’s repeatedly connect the closest pairs (w/o forming cycles or 3ways branches)

The algorithm

I Let n be the number of points in the set

I For i = 1 to n − 1 do
I Let d =∞
I For each pair of endpoints (x , y) of partial paths

I If dist(x , y) ≤ d then xm = x , ym = y , d = dist(x , y)

I Connect (xm, ym) by an edge

I Connect the two endpoints by an edge

Works correctly for previous data, but still not correct

correct

found by this algorithm
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That’s the Traveling Salesman Problem

A correct algorithm

I d =∞
I For each permutation Πi of the n! existing ones

I if (cost(Πi ) ≤ d) then
I d = cost(Πi ) and Pmin = Πi

I return Pi

Actually no known correct and polynomial algorithm

I This algorithm is very slow (exponential time)

I But that’s the only correct known

I (this problem is one of the NP-Complete set, by the way)

Conclusion: never trust “obviously correct” algorithms
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Other try to convince septics: you test it

Issues
I a whole load of arrays exists out there. Cannot test them all. . .

I How much should you test to get convincing? Which ones do you pick?

Let’s look at another (simpler) problem

I Input: 3 integers values, representing the sides’ length of a triangle

I Output: Tells whether the triangle is
I Scalene: no two sides are equal
I Isosceles: exactly two sides are equal
I Equilateral: all sides are equal

Quiz: Create a set of Test Cases for this program

I Ie, the list of tests you need to write to ensure that the program is robust
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Solutions – 1 point for each correct answer

I T1:
I T2:

I T3:
I T4:
I T5:
I T6:
I T7:
I T8:
I T9:
I T10:
I T11:
I T12:
I T13:
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First Conclusions on Testing

About the Quiz
I All T1-T13 correspond to failures actually found in some implementations

I How many tests did you found yourself?
< 5? 5− 7? 8− 10? > 10? All?

I Highly qualified, experienced programmers score 7.8 on average

Testing aint easy

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude all failures

I Without a specification, it is not clear even what a failure is
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Stop academic examples, check Real Life!

Cost of Software Errors: some numbers
I $60 billion: Estimated cost of software errors for US economy per year [2002]

I $240 billion: Size of US software industry [2002]
incl. profit, sales, marketing, development (50% maybe)

I 50%: estimated part of each software project spent on testing
(spans from 30% to 80%)

I Rough estimate: money spent on testing ≈ cost of remaining errors

I That’s 50% of size of software industry!

More on Testing in POO lecture, in january

I We need systematic, efficient, tool supported testing and debugging methods

To convince real septics, you have to prove correctness

I And you cannot do that without a proper specification (at least)
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How to prove that ’selection sort’ sorts arrays?

Back to the roots: what exactly do you want to prove?

I Proper specification mandatory to proof: gives what we have, what we want

I We also need a mathematical logic to carry the proof

Hoare Logic [Hoare 1969]

I Set of logical rules to reason about the correctness of computer programs

I Central feature: description of state changes induced by code execution

I Hoare triple: {P} C {Q}
I C is the code to be run
I P is the precondition (assertion about previous state)
I Q is the postcondition (assertion about next state)
I This can be read as “If P is true, then when I run C, Q becomes true”
I C is said to satisfy specification (P,Q)

I Such notation allows very precise algorithm specifications

I Axioms and Inference rules allow rigorous correctness demonstrations

I Note: other logics (temporal logic) proposed as replacement, but harder
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Introducing (bad) joke about precise specification

While traversing Scotland, 3 people see a cow

The Economist says:

I Cows in Scotland are brown

The Logician says:

I No, no. There are cows in
Scotland of which one is brown

The Computer Scientist says:

I No, no. There is at least one
cow in Scotland of which one
side is brown
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Specification: Putting it into Practice

Back to our Example: A sorting program
def sort(a:Array[Int]):Array[Int] = { ... }
Specification V1

I Precondition: a is an array
I Post-condition: returns the sorted argument array
I Is it good enough? Not quite: sort({2,1,2} ; {1,2,2,17} /

Specification V2
I Precondition: a is an array
I Post-condition: returns a sorted array with only elements of a
/ sort({3,2,1} ; {2,2,2,2,2}

Specification V3
I Precondition: a is an array
I Post-condition: returns a permutation of a that is sorted
/ sort({}) leads to unwanted behavior

Specification V4
I Precondition: a is a non-null array
I Post-condition: returns a permutation of a that is sorted
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The Contract Metaphor

Contract is preferred specification metaphor for procedural and OO.
– B. Meyer, Computer 25(10)40-51, 1992

Same Principles as Legal Contract between a Client and Supplier

Supplier aka Implementer, in Java, a class or method

Client Mostly a caller object, or human user for main()

Contract One or more pairs of ensures/requires clauses
defining mutual obligations of client and implementer

Meaning of a Contract: Specification of method C@m()

I ”If a caller of C@m() fulfills the required Precondition,
then the class C ensures that the Postcondition holds after m() finishes.”

Wrong Interpretations:

I ”Any caller of C@m() must fulfill the required Precondition.”

I ”Whenever the required Precondition holds, then C@m() is executed.”
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What is Design By Contract?

View the relationship between two classes as a formal agreement,
expressing each party’s rights and obligations. – Bertrand Meyer

Example: Airline Reservation
Obligations Rights

Customer I Be at Paris airport at
least 3 hour before
scheduled departure time

I Bring acceptable baggage

I Pay ticket price

I Reach Los Angeles

Airline I Bring customer to Los
Angeles

I No need to carry
passenger who is late

I has unacceptable baggage

I or without paid ticket

I Each party expects benefits (rights) and accepts obligations
I Usually, one party’s benefits are the other party’s obligations
I Contract is declarative: it is described so that both parties can understand

what service will be guaranteed without saying how
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Testing vs. Verification

Testing

I Goal: find evidence for presence of failures

I Testing means to execute a program with the intent of detecting failure

I Related techniques: code reviews, program inspections

I Automatize the testing process is delayed until the POO module

Verification
I Goal: find evidence for absence of failures

I Testing cannot guarantee correctness, i.e., absence of failures

I Related techniques: code generation, program synthesis (from spec)

I This week: How can we prove the correctness of an algorithm?

Debugging

I Systematic process to find and eliminate defects leading to observed failures
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Back on Hoare Logic

Hoare Logic [Hoare 1969]

I Set of logical rules to reason about the correctness of computer programs

I Central feature: description of state changes induced by code execution

I Hoare triple: {P} C {Q}
I C is the code to be run
I P is the precondition (assertion about previous state)
I Q is the postcondition (assertion about next state)
I This can be read as “If P is true, then when I run C, Q becomes true”
I C is said to satisfy specification (P,Q)

I Such notation allows very precise algorithm specifications

I Axioms and Inference rules allow rigorous correctness demonstrations

I Note: other logics (temporal logic) proposed as replacement, but harder

Game now

I See how we can prove that a Hoare triple holds
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Assertions

What exactly is an assertion?

Definition
Formula of first order logic describing relationships between algorithm’s variables

Constituted of:
I Variables of algorithm pseudo-code

I Logical connectors: ∧ (and) ∨ (or) ¬ (not) ⇒, ⇐
I Quantifiers: ∃ (exists), ∀ (for all)

I Value-specific elements (describing integers, reals, booleans, arrays, sets, . . . )

Example:

I (x × y = z) ∧ (x ≤ 0)

I n2 ≥ x
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Examples of specification

Solving quadratic equations (ax2 + bx + c = 0)

P: a, b, c ∈ R and a 6= 0

Q: (solAmount ∈ N) ∧ (s, t ∈ R)∧
( (solAmount = 0)∨

(solAmount = 1 ∧ as2 + bs + c = 0)∨
(solAmount = 2 ∧ as2 + bs + c = 0 ∧ at2 + bt + c = 0 ∧ s 6= t))

Possible implementation

∆ = b2 − 4ac
if (∆ > 0)

s = −b+
√

∆
2a ; t = −b−

√
∆

2a ;
solAmount = 2

else if (∆ = 0)
s = −b

2a ; solAmount = 1
else (ie, ∆ < 0)

solAmount=0

I Here, the proof will be difficult. . .

I . . . because it is trivial.

I Correctness comes from definitions!
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Demonstration tool: inference rules

Definitions
I Inference: deducting new facts by combining existing facts correctly

I Inference rule: mechanism specifying how facts can be combined

Classical representation of each rule:

p1, p2, p3, . . . , pn
q

I Can be read as “if all p1, p2, p3, . . . , pn are true, then q is also true”

I Or “in order to prove q, you have to prove p1, p2, p3, . . . , pn”

I Or “q can be deduced from p1, p2, p3, . . . , pn”
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First axioms and rules

Empty statement axiom {P}skip{P}

Assignment axiom {P[x/E ]}x := E{P}

I P[x/E ] is P with all free occurrences of variable x replaced with expression E

I Example:
I P: x = a ∧ y = b
I Q: x = b ∧ y = a
I SWAP: algorithm achieving transition; For example: t = x ; x = y ; y = t
I We should prove: {P}SWAP{Q}

Consequence rule P ′ ⇒ P, {P} C {Q},Q ⇒ Q ′

{P ′} C {Q ′}

I P is said to be weaker than P ′

I Q is said to be stronger than Q ′
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Rules for algorithmic constructs

Rule of composition {P}C1{Q}, {Q}C2{R}
{P}C1;C2{R}

I C1;C2 means that both code are executed one after the other.

I Can naturally be generalized to more than two codes

Conditional Rule
{P ∧ Cond} T {Q}, P ∧ ¬Cond ⇒ Q

{P} if Cond then T endif {Q}

Conditional Rule 2
{P ∧ Cond} T {Q}, {P ∧ ¬Cond} E {Q}
{P} if Cond then T else E endif {Q}

While Rule
{I ∧ Cond} L {I}

{I} while Cond do L done {I ∧ ¬Cond}

I {I} is said to be the loop invariant
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How to prove algorithms?

The two things to prove about algorithms

I Correction proof: when it terminates, the algorithm produce a valid result
with regard to problem specification

I Termination proof: the algorithm always terminate

There is no perfect proof, only good ones

I Your main goal is to convince people that your code works

I If your friends are permissive, very sparse hints may be enough

I If your friends are picky, you need to provide more details

I Note that I’m gonna be very picky in exam ;)

Detailed proofs

I Most convinient way to prove an algorithm in practice: think backward

I Compute the weakest precondition you need to get the postcondition you want

I What must be the precondition of the given code to get the wanted
postcondition?
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Computing the Weakest Preconditions

Computing the WP to get the post-condition {Q} from C – WP(C,Q)

1. WP(nop,Q) ≡ Q

2. WP(x := E ,Q) ≡ Q[x := E ]

3. WP(C ;D,Q) ≡ WP(C ,WP(D,Q))

4. WP(if Cond then C else D, Q)
≡ (Cond = true⇒WP(C ,Q)) ∧ (Cond = false⇒WP(D,Q))

5. WP(while E do C done ,Q) ≡ I (with I invariant, V variant)
Plus the following proof obligations:

• (E = true ∧ I ∧ V = z)⇒WP(C , I ∧ V < z)) (variant gets decremented)
• I ⇒ V ≥ 0 (variant remains valid)
• (E = false ∧ I )⇒ Q (once done, Q is achieved)

Seems complicated, but isn’t that much

I The process is automated enough to keep quite mecanical and simple

I We’ll come back on this in lab (and exam ;)
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Idea of the correction of recursive function

P(n): Precondition at step n; Q(n, rn): Postcondition at step n with result rn

We want to show P(n) {TREC} Q(n, rn)

Q(n − 2, rn−2)Q(n − 1, rn−1)
3O Proof of recursive climb

Q(0, r0)

2O Proof of base case

P(n − 1) P(n − 2) P(0)
1O Proof of recursive descent

Q(n, rn)

P(n)

If f (n) is expressed as function of f (n − 1), we need:

I In recursive case
I Precondition of f (n) implies precondition of f (n − 1) 1O

If not, the computation is impossible
I Hyp: postcondition of f (n − 1) true. Proof postcondition of f (n) 3O

I In base case
I precondition and computation allow to prove postcondition 2O
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Example of the factorial (how unexpected)

Function factorial(n) is
if n == 0 then

return 1 /* base case */

else
return n × factorial(n-1) /* recursive case */

P(n): n ≥ 0 cond(n): n = 0 Q(n, r): r = n! nint= n − 1

I Descent: P(n) ∧ ¬cond(n)⇒ P(nint) ≡ (n ≥ 0) ∧ (n 6= 0)⇒ (n − 1 ≥ 0)
Trivial

I Base Case: P(n) ∧ cond(n)⇒ Q(n, r) ≡ n ≥ 0 ∧ n = 0⇒ r = n!
True (since 1 = 0! no matter what happens – look at the base case’s code)

I Recursive climb: P(n) ∧ ¬cond(n) ∧ Q(nint , rint)⇒ Q(n, r)
≡ (n ≥ 0) ∧ (n 6= 0) ∧ (rint = nint !)⇒ (r = n!)

True because:
I r = n × rint in general case (by looking at the code)
I rint = nint ! = (n − 1)! by induction hypothesis
I r = n × (n − 1)! = n!
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Proof of Termination

I Sufficient Conditions:
I Successive values of parameter x : strictly monotonous suite

(may need to specify the order)
I Existence of an extrema x0 verifying the stopping condition

I Remarque: that’s no necessary condition
The Syracuse suite seems to terminate without this

I Example: the factorial, of course
I n ≥ 0
I n strictly decreasing
I 0 = stopping condition
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The dark side of Software Correctness Proofs

Being picky can lead to long proofs

I Lot and lot of mathematical work to prove even simple algorithms

I Overly detailed proofs are done only when really needed:
Aircraft, Nuclear power plant, Emergency room, . . .

I But that’s not impossible; One success story amongst hundreds:
SACEM embedded system controling the train speed on the RER Line A in Paris.

Support from language / automated tools would be welcomed

I Unfortunately, Java/Scala is not Ada (or even better: Eiffel)

I Java solution (JML – Java Modeling Language): far from production ready

I Scala is better regarding algorithms’ specification, but still a moving target
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The bright side of Software Correctness Proofs

Sometimes you have to prove your code

I Cost/gain ratio: if you cannot afford to loose, prove it correct (nuclear plants)

I If your client wants proofs, the competitors disappear (competitive advantage)

I You’re studying in Nancy, there is a local history of algorithm proofs

I There will be 1/4 of points on proofs at the exam . . .

Proofs are useful even when it is not mandatory

I Expressing pre/post and loop invariant greatly helps understanding the code

I This understanding helps writing the right test cases

I And tests are not overly pleasant either (you’ll see in POO!)

What is expected for the exam

I Well, that’s similar to when you write code

I I don’t bother a missing } in the code, as long as the idea is here

I I don’t bother a partially wrong proof, as long as the method is here

(this ends the third lecture)
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Why do you want to avoid recursion

What gets done on Function Calls

1. Create a function frame on the stack

2. Push (copy) value of parameters

3. Execute function

4. Pop return value

5. Destruct stack frame

Recursion does not interfere with this schema
I Recursion can thus be less efficient than iterative solutions

I In time: function calling has a price

I In space: the call stack must be stored
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Example: gcd of two natural integers

Greatest Common Divisor

gcd(a, b : Integer) = (r : Integer)

I Precondition: a ≥ b ≥ 0

I Postcondition: (a mod r = 0) and (b mod r = 0) and
¬ (∃s, (s > r) ∧ (a mod s = 0) ∧ (b mod s = 0))

Recursive Definition
if b = 0 then r ← a

else r ← gcd(b, a mod b)
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Computation of gcd(420,75)

if b = 0 then r ← a
else r ← gcd(b, a mod b)

15

0b

a

15

a

b

30

45

30b

a

75

45b

a

75

420

b

a

Stack

I gcd(420, 75) = gcd(75, 45) = 15

I gcd(75, 45) = gcd(45, 30) = 15

I gcd(45, 30) = gcd(30, 15) = 15

I gcd(30, 15) = gcd(15, 0) = 15

I gcd(15, 0) = 15
this is the Base Case

h
t
t
p
:
/
/
x
k
c
d
.
c
o
m
/
1
2
7
0
/

I Let’s pop parameters

I r ← rint (no other computation: G (x , y) = y)

I The result of initial call is known as early as from Base Case
This is known as Tail Recursion

I Factorial: multiplications during climb up
⇒ non-terminal recursion
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Transformation to Non-Recursive Form

Every recursive function can be changed to a non-recursive form

Several Methods depending on function:

I Tail Recursion: very simple transformation

I Non-Tail Recursion: two methods (only one is generic)

Compilers use these optimization techniques (amongst much others)
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Non-Recursive Form of Tail Recursion

Cookbook to change Tail Recursion to Non-Recursive Form

I Generic recursive algorithm Example: get last char of string

f (x):
if cond(x) then BaseCase(x)

else t(x); r ← f (xint)

last(s):
if empty(s.tail) then r ← s.head

else r ← last(s.tail)

I Equivalent iterative algorithm

f ′(x):
u ← x
until cond(u) do

T(u)
u ← h(u)

end
BaseCase(u)

last’(s):
l ← s
until empty(l .tail) do

// T(u) does nothing
l←l.tail

end
r ← l .head
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Other Examples

nth(s,i): get char number i out of s

nth(s,i):
if n=0 then r ← s.head

else r ← nth(s.tail , i − 1)

Two arguments, still no T(u)

nth’(s,i):
l ← s; k ← i
until k=0 do

l←l.tail; k←k-1
end
r ← l .head

is member(s,c): assess whether c is member of s

is member(s,c):
if empty(s) then r ← FALSE
if s.head=c then r ← TRUE

else r ← is memb(s.tail)

2 base cases, still no T(u)

is memb’(s,c):
l ← s
until empty(l) OR l.head=c do

l←l.tail
end
if empty(s) then r ← FALSE
r ← TRUE
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Last Example

Non-Recursive Form of GCD

gcd(a, b):
if b = 0 then r ← a

else r ← gcd(b, a mod b)

gcd ′(a, b):
u ← a; v ← b
until v=0 do
temp ← v
v ← u mod v
u ← temp

end
r ← u

I This is given by an immediate rewriting

I Computers are good at this kind of game (e.g., in compilers)

I Meta-programming troubling at first sight, but still fully mechanic
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Non-Recursive form of Non-Tail functions

How to deal with non-tail functions?
I Previous method don’t work because of those computations at recursive climb:

I Where should the ongoing computation be stored (they were stacked)?
fact(3) = 3× fact(2) = 3× 2× fact(1) = 3× 2× 1 = 3× 2 = 6

what’s done is no more to do
I Computing during descent ; nothing left at climb ; Tail Recursion

fact(3) = 3 × fact(2) = 3× 2× fact(1) = 6 × fact(1) = 6 × 1 = 6 = 6

I One extra variable is enough for the storage of “ongoing” computation
I Since these computations are done, store their result not the stack of operations
I Adding an extra parameter to my recursive function does the trick
I Prototype change ; put recursion into a helper function with more parameters

Warning: this does not always work!

I Computations done out of order ; must be associative and commutative

I This (simple) method does not always work; another one comes afterward
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Example: Changing Factorial into Tail Recursion

fact(n):
if n = 0 then r ← 1

else r ← n × fact(n − 1)

fact’(n): λ(n, 1)
λ(n, acc) :

if n = 0 then r ← acc
else r ← λ(n − 1, acc × n)

Step-by-step approach

0. (it works because the addition is commutative and associative)

1. Create a lambda function doing the recursion, with more parameters
I Local copy of the parameters carrying the recursion
I Add as many accumulators as operations done on climb up

2. Main function simply calls the lambda function
I Copy of the parameters carrying the recursion
I Initialize accumulators with base case’s value (often identity element)

3. Body of the lambda function:
I General treatment: as before, but do intermediate ops into the accumulators
I Base case: get result directly from the accumulators
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Let’s take another example

Computation of a string’s length

len(str):
if empty(s) then 0

else 1+len(cdr(s))

len’(str) = λ(str,0)

λ(str,acc):
if empty(str) then acc

else λ(cdr(str), acc+1)

0. (works because addition is commutative and associative)

1. Create a λ function doing the recursion, adding one accumulator per operation

2. Main function: calls the lambda function and initializes the parameters

3. Body of the λ function:
I General treatment: as before, but do intermediate ops into the accumulator(s)
I Base case: get result directly from the accumulator(s)
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Closing the loop: Non-recursive form of Factorial

fact(n):
if n = 0 then r ← 1

else r ← n × fact(n − 1)

fact’(n): λ(n, 1)
λ(n, acc) :

if n = 0 then r ← acc
else r ← λ(n − 1, acc × n)

I This function uses Tail Recursion

; We can turn the helper into non-recursion with the method seen before

I Then, we combine everything

λ′(n, acc) :
td ← n; a← acc
until td = 0 do
a← a× td // beware of the
td ← td − 1 // updates’ order

end
return a

fact”(n):
td ← n; a← 1
until td = 0 do
a← a× td
td ← td − 1

end
return a

I These two transformations are simple, automatic and neat. . .

I . . . when applicable!!! / If not, let’s get angry and mean!
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Generic Algorithm Using a Stack

Idea
I Processors are sequential and execute any recursive function
⇒ Always possible to express without recursion

I Principle: simulating the function stack of processors
By using a stack explicitly

Example with only one recursive call

if cond(x) then r ← g(x)
else t(x); r ← G (x , f (xint))

Remark:
If h() is invertible, no need for a stack:
parameter reconstructed by h−1()

Stopping Condition = counting calls

p ← emptyStack
a← x (* a: locale variable *)
(* pushing on stack (descent) *)
until cond(a) do

push(p, a)
a← h(a)

end
r ← g(a) (* Base Case *)
(* poping from stack (climb up) *)
until stackIsEmpty(p) do
a← top(p); pop(p); t(a)
r ← G (a, r)

end
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Non-Recursive Form of Hanöı Towers (1/2)

hanoi(n,a,b,c): (a to b, with c as disposal)
if n > 0 then hanoi(n-1, a, c)

move(a, b)
hanoi(n-1, c, b)

One should mimic processor behavior wrt stacking

I H(4,a,b,c) = H(3,a,c,b)+D(a,b)+H(3,c,b,a)

I Compute first unknown term: H(3,a,c,b) = H(2,a,b,c)+D(a,c)+H(2,b,c,a)

I Compute first unknown term: H(2,a,b,c) = H(1,a,c,b)+D(a,b)+H(1,c,b,a)

I Compute first unknown term: H(1,a,c,b) = D(a,c)

I Take on something casted aside: H(1,c,b,a) = D(c,b)

I and so on until everything casted aside is done (until stack is empty)

We get:

H(4,a,b,c) = D(a,c)+D(a,b)+D(c,b)+D(a,c)+H(2,b,c,a)+D(a,b)+H(3,c,b,a)︸ ︷︷ ︸
H(2,a,b,c)︸ ︷︷ ︸
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Non-Recursive Form of Hanöı Towers (2/2)

hanoi(n,a,b):
if n > 0 then hanoi(n-1, a, c)

move(a, b)
hanoi(n-1, c, b)

hanoi derec(n, A, B) :
push (n, A, B, 1) on stack
while (stack non-empty)

(n, A, B, CallKind) ← pop()
if (n > 0)

if (CallKind == 1)
push (n, A, B, 2) on stack (* Cast something aside for later *)
push (n-1, A, C, 1) (* Compute first unknown soon *)

else /* ie, CallKind == 2 */
move(A, B)
push (n-1, C, B, 1) on stack

0AB1
1AC1 1AC2 0BC1 0AB1

2AB1 2AB2 2AB2 2AB2 1CB1 1CB2 0AB1
3AC1 3AC2 3AC2 3AC2 3AC2 3AC2 3AC2 3AC2 2BC1

4AB1 4AB2 4AB2 4AB2 4AB2 4AB2 4AB2 4AB2 4AB2 4AB2
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 8 Step 9 Step 11 Step 13

hanoi(4,a,b)=D(ac)+D(ab)+D(cb)+D(ac)+. . .

Rq: simpler iterative algorithms exist (they are not automatic transformations)
J.C. Fournier. Pour en finir avec la dérécursivation du problème des tours de Hanöı. 1990.
http://archive.numdam.org/article/ITA_1990__24_1_17_0.pdf
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Combinatorial Search and Optimization

Large class of Problems with similar algorithmic approach

I Solutions are really numerous; A set of constraints make some solution invalids

I Combinatorial Search ; look for any valid solution
Combinatorial Optimization ; look for the solution maximizing a function

Examples

I Open the lock: Find the right 4-digits combination out of 10000

I Knapsac: Ali-Baba searches object set fitting in bag maximizing the value

I Minimum Spanning Tree of a given graph

I Traveling Salesman: visit n cities in order minimizing the total distance

First Resolution Approach: Exhaustive Search

I Study every solutions
; Test all lock combinations

; Enumerate all possible knapsack contents + get max value

I This often reveals to be exponential and thus infeasible
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Better Approach?

Guessing the right number can become difficult that way

I 0001 ; no; 0002 ; no; 0003 ; no; 0004 ; no; 0005 ; no; Booooring

I Let’s more information: length of correct suffix instead of yes/no answers
0001 ; 0; 0002 ; 0; 0004 ; 1; 0024 ; 2; 0424 ; 3; 5424 ; 4, bingo

This leads to a much more efficient algorithm:

I Guess each position by testing every digit in that pos until response increases

I That’s even easy to write by mixing recursion with a for loop:

search(current,pos,len): // initial values: search({0,0,0,0}, 0, 0)
for n ∈ [0; 9] do

put n into current at position pos
if try(current) > len then search(current,pos+1, try(current))

else // no luck. Let’s test the next value of n

This is Backtracking
I Tentative choices + cut branches leading to invalid solutions (backtrack)

I Restrict study to valid solutions only ; if bag is full, don’t stuff something else

I Also factorize computations ; only sum up once the N first objects’ value
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Back-tracking

Characterization
I Search for a solution in given space:

I Choice of a (valid) partial solution
I Recursive call for the rest of the solution

I Some built solutions are dead-ends
(no way to build a valid solution with choices made so far)

I Backtracking then mandatory for another choice

I General Schema: Recursive Call within an Iteration

First example: Independent Sets

I Sets of vertices not interconnected by any graph edge

I Init: set of 1 element; Algo: increase size as much as possible then backtrack

12

3 4

5

6

I {1}, {1, 3}. Stuck. Remove 3. {1, 6}. Stuck.
Removing 6 is not enough, remove everything.

I {2}, {2, 4}, {2, 4, 5} (Stuck; remove 5 then 4) {2, 5}
I {3}, {3, 4}, {3, 4, 5}, {3, 5}; {4}, {4, 5}; {5}, {6}
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Algorithm Computation Time

Solution Tree of this Algorithm

1 2 3 4 5 6

∅

4513 16 24 25 34 35

345245

I Traverse every nodes
(without building it explicitly)

I Amount of algorithm steps = amount of
solutions

I Let n be amount of nodes

Amount of solutions for a given graph?

I Empty Graph (no edge) ; In = 2n independent sets

I Full Graph (every edges) ; In = n + 1 independent sets

I On average ; In =
n∑

k=0

(kn) 2−k(k−1)/2

n 2 3 4 5 10 15 20 30 40
In 3,5 5,6 8,5 12,3 52 149,8 350,6 1342,5 3862,9
2n 4 8 16 32 1024 32768 1048576 1073741824 1099511627776

I Backtracking algorithm traverses In nodes on average
I An exhaustive search traverses 2n nodes
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Other example: n queens puzzle

Goal:
I Put n queens on a n × n board so than none of them can capture any other

Algorithm:

I Put a queen on first line
There is n choices, any implying constraints for the following

I Recursive call for next line

Pseudo-code put queens(int line, board)

If line > line count, return board (success)

∀ cell ∈ line,
I Put a queen at position cell × line of board
I If conflict, then return (stopping descent – failure)
I (else) call put queens(ligne+1, board ∩ {cell , line})

⇒ Recursive Call within a Loop
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Solving the 4 queens puzzle
I At each step of recursion, iterate on differing solutions
I Each choice induces impossibilities for the following
I For each iteration, one descent
I When stuck, climb back (and descent in following iteration)
I Until we find a solution (or not)

Symetric

21 3 4
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Scala implementation of n queens puzzle

def Solution(board:Array[Array[Boolean]], line:Int) {
if (line >= board.length) // Base Case

return true;

for (col <- 0 to board.length - 1) { // loop on possibilities
if (validPlacement(board, line, col)) {

putQueen(board, line, col);
if (Solution(plateau, line + 1)) // Recursive Call

return true; // Let solution climb back
removeQueen(board, line, col);

}
}
return false;

}
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Some Principles on Backtracking

I Study “depth first” of solution tree

I On backtracking, restore state as before last choice
Trivial here (parameters copied on recursive call), harder in iterative

I Strategy on branch ordering can improve things

I Progressive Construction of boolean function

I If function returns false, there is no solution

I Probable Combinatorial Explosion (44 boards)
⇒ Need for heuristics to limit amount of tries
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Conclusion on Recursion
Essential Tool for Algorithms

I Recursion in Computer Science, induction in Mathematics

I Recursive Algorithms are frequent because easier to understand . . .
(and thus easier to maintain)

. . . but maybe slightly more difficult to write (that’s a practice to get)

I Recursive programs maybe slightly less efficient. . .
. . . but always possible to transform a code to non-recursive form
(and compilers do it)

I Classical Functions: Factorial, gcd, Fibonacci, Ackerman, Hanöı, Syracuse, . . .

I Sorting Functions: MergeSort and QuickSort are amongst the most used
(because efficient)

I BackTracking: exhaustive search in space of valid solutions

I Data Structure module: several recursive datatypes with associated algorithms
I Recursion is the root of computation since it trades description for time.

– ”Epigrams in Programming”, by Alan J. Perlis of Yale University.

(this ends the fourth lecture)
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