Chapitre 2 Transformée de Fourier

Magalie THOMASSIN

magalie.thomassin@univ-lorraine.fr

TELECOM Nancy 1^{re} année

SICA1 2014–2015

1 / 25

Plan

Du DSF à la TF

- Du dév. en série de Fourier vers la transformée de Fourier (TF)
- Propriétés de la TF
- 4 Corrélation et densité spectrale
- Cas des signaux à temps discret

SICA1 2014-2015

■ Cas des signaux périodiques ou transitoires : Développement en Série de Fourier

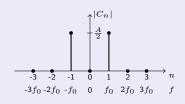
$$x_T(t) = \sum_{n = -\infty}^{+\infty} C_n \cdot e^{j2\pi n f_0 t} \text{ avec } C_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-j2\pi n f_0 t} dt$$

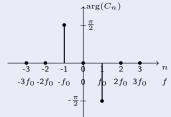
Corrélation et densité spectrale

où T est la période du signal et $f_0 = \frac{1}{T}$.

Dans le spectre de raies de $x_T(t)$, la distance entre raies adjacentes est égales à $f_0 = 1/T$.

Exemple : $x_T(t) = A\sin(2\pi f_0 t)$. Son développement en série de Fourier est la suivante (spectre de raies).





Ne pas confondre la fréquence de la sinusoïde f_0 et l'axe des fréquences f.

Comme il ne faut pas confondre la période T et l'axe des temps t.

Justification heuristique de la TF

■ Cas des signaux périodiques ou transitoires : Développement en Série de Fourier

$$x_T(t) = \sum_{n = -\infty}^{+\infty} C_n . e^{j2\pi n f_0 t} \text{ avec } C_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-j2\pi n f_0 t} dt$$

où T est la période du signal et $f_0 = \frac{1}{T}$.

Dans le spectre de raies de $x_T(t)$, la distance entre raies adjacentes est égales à $f_0 = 1/T$.

 \blacksquare Généralisation aux signaux non-périodiques et permanents : $T \to \infty$

$$x(t) = \lim_{T \to \infty} x_T(t) = \lim_{T \to \infty} \sum_{n = -\infty}^{+\infty} C_n e^{j2\pi n f_0 t}$$
$$= \lim_{T \to \infty} \sum_{n = -\infty}^{+\infty} \left(\frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-j2\pi n f_0 t} dt \right) e^{j2\pi n f_0 t}$$

axe des fréquences : $n.f_0 o f$ (variable continue), $f_0 = 1/T o d\!f$ (infinitésimale), $\sum o \int$

$$TF: \qquad x(t) = \int_{-\infty}^{+\infty} X(f)e^{j2\pi ft}df \text{ avec } X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

$$\Rightarrow X(f) \text{ est le spectre de } x(t).$$

Plan

Du DSF à la TF

- Du dév. en série de Fourier vers la transformée de Fourier (TF)
- 2 Propriétés de la TF
- Existence de la TF
- 4 Corrélation et densité spectrale
- Cas des signaux à temps discret

TF d'un signal réel et parité

Tout signal réel x(t) peut se décomposer en la somme d'un signal pair et d'un impair :

$$x(t) = x_p(t) + x_i(t)$$

En fait,
$$x_p(t) = \frac{1}{2}(x(t) + x(-t))$$
 et $x_i(t) = \frac{1}{2}(x(t) - x(-t))$.

- \blacksquare La TF d'un signal réel est, en général, une fonction complexe (de la variable f) et :
 - $ightharpoonup \operatorname{Re}(X(f)) = X_p(f)$, TF de la partie paire de x(t), est une fonction paire
 - $igs j \operatorname{Im} (X(f)) = X_i(f)$, TF de la partie impaire de x(t), est une fonction impaire
 - $\triangleright |X(f)|$, spectre d'amplitude, est une fonction paire
 - ightharpoonup $\operatorname{arg}(X(f))$, spectre de phase, est un fonction impaire
- Pour être exact, on montre que :

$$X(f) = 2 \int_0^{+\infty} x_p(t) \cos(2\pi f t) dt - 2j \int_0^{+\infty} x_i(t) \sin(2\pi f t) dt$$

■ La TF d'un signal réel, X(f), est réelle si et seulement si le signal x(t) est pair.

Exemple - TF de la fonction porte (signal rectangulaire)

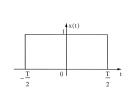
- Soit le signal $x(t) = \text{rect}(\frac{t}{T})$, signal rectangulaire, centré sur 0, de durée T
- lacktriangle Montrer que la TF de x(t) est réelle.

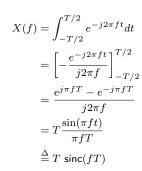
Du DSF à la TF

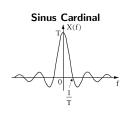
6 / 25

Exemple - TF de la fonction porte (signal rectangulaire)

- Soit le signal $x(t) = \text{rect}(\frac{t}{T})$, signal rectangulaire, centré sur 0, de durée T
- Montrer que la TF de x(t) est réelle.







Propriétés

Chgmt d'échelle de temps (a>0): $x(at) \leftrightarrow |a|^{-1}X(f/a)$ (se démontre simplement par changement de variable $\tau = at$)

Inversion chronologique:

$$x(-t) \leftrightarrow X(-f) \ (= X^*(f) \ \text{si} \ x(t) \ \text{r\'eel})$$

Conjugaison complexe : $x^*(t) \leftrightarrow X^*(-f)$ si x(t) réel : $X(-f) = X^*(f)$

Parseval:

Linéarité: $ax(t) + by(t) \leftrightarrow aX(f) + bY(f)$

Translation temporelle:

$$x(t-\tau) \longleftrightarrow X(f).\exp(-j2\pi f\tau)$$
 (changement de variable $\sigma = t - \tau$)

Translation fréquentielle : $x(t).\exp(j2\pi f_0 t) \leftrightarrow X(f-f_0)$

$\int_{0}^{+\infty} |x(t)|^{2} dt = \int_{0}^{+\infty} |X(f)|^{2} df = \frac{1}{2\pi} \int_{0}^{+\infty} |X(\omega)|^{2} d\omega$ dém.: $\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} x(t)x^*(t)dt = \int_{-\infty}^{+\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(\omega) e^{-j\omega t} d\omega \right] dt$ $\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(\omega) \left[\int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \right] d\omega$

dém. (n = 1) : en dérivant par rapport à t chaque membre

$$\boxed{ \text{D\'erivation}: \quad \frac{d^n x}{dt^n} \leftrightarrow (j2\pi f)^n X(f) }$$

de:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$$
, il vient:

$$\frac{dx(t)}{dt} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} j\omega X(\omega) e^{j\omega t} d\omega, \text{ d'où le résultat cherché.}$$

Intégration :
$$\int_{-\infty}^{t} x(u) du \leftrightarrow \frac{1}{j2\pi f} X(f) + \frac{1}{2} X(0).\delta(f) \text{ avec } X(0) = \int_{-\infty}^{+\infty} x(t) dt$$

$$h(t) = \int\limits_{-\infty}^{+\infty} x(\tau) y(t-\tau) d\tau \to H(\omega) = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} x(\tau) y(t-\tau) d\tau \\ +\infty \qquad [+\infty] \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{$$

$$H(\omega) = \int_{-\infty}^{+\infty} x(\tau) \int_{-\infty}^{+\infty} y(t-\tau)e^{-j\omega t} dt d\tau = \int_{-\infty}^{+\infty} x(\tau)e^{-j\omega\tau} Y(\omega)d\tau = Y(\omega)X(\omega)$$

$$\begin{array}{c|c} \textbf{Modulation}: & x(t).y(t) \leftrightarrow X(f)*Y(f) \\ & \text{mais} & x(t).y(t) \leftrightarrow \frac{1}{2\pi}X(\omega)*Y(\omega) \\ \end{array} \begin{array}{c} \text{Cas particulier}: \\ & x(t).\cos 2\pi f_0 t \leftrightarrow \frac{1}{2}\big[X(f+f_0)+X(f-f_0)\big] \\ \end{array}$$

Cette propriété se démontre à partir de la précédente, en utilisant la propriété de dualité suivante.

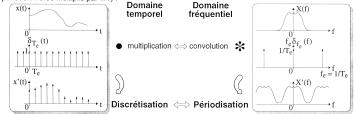
8 / 25

Propriétés

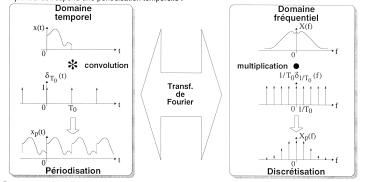
Dualité: $F[x(t)] = y(f) \Leftrightarrow F[y(t)] = x(-f)$ (ou $F[x(t)] = y(\omega) \Leftrightarrow F[y(t)] = 2\pi x(-\omega)$)

Cette propriété sera démontrée en TD. Elle est particulièrement utile pour calculer ou inverser des TF, ou pour démontrer ou déterminer des propriétés de la TF. Exemples :

Autre exemple : les propriétés de modulation et de convolution vues précédemment sont deux propriétés duales. Considérons le cas d'une modulation particulière, la discrétisation ou échantillonnage idéal (voir transp. 1.14), c'est à dire la multiplication d'un signal par un peigne de Dirac. Dans le domaine fréquentiel, cette opération se traduit par une convolution entre la TF du signal et la TF du peigne (on verra plus tard que la TF d'un peigne unitaire de période T est un peigne de période inverse multiplié par 1/T) :



Ainsi, toute opération d'échantillonnage temporel s'accompagne inévitablement d'une périodisation fréquentielle; on verra dans la suite les conséquences de ce phénomène sur les conditions à vérifier pour assurer un bon échantillonnage. Bien sûr, on observe la propriété duale: à tout échantillonnage fréquentiel correspond une périodisation temporelle:



Remarque : si le signal de départ est à temps discret, le spectre est périodique, et on obtient par conséquent un signal et son spectre tous deux discrets et périodiques.

Plan

Du DSF à la TF

- Du dév. en série de Fourier vers la transformée de Fourier (TF)
- Propriétés de la TF
- 3 Existence de la TF
- Corrélation et densité spectrale
- 5 Cas des signaux à temps discret
- Transformée de Fourier Discrète (TFD)

Existence de la TF

Propriétés de la TF

- La TF d'une signal x(t) existe si l'intégrale converge.
- Pour la plupart des signaux physiques, la TF existe :
 - ▶ Tous les signaux continus à E finie possèdent une TF
- Les signaux continus à P finie, physiquement irréalisables, permettent de modéliser des catégories importantes de signaux (quasi-)permanents.
 - ▶ Ils ne satisfont pas aux critères usuels de convergence de la TF
 - ▶ Mais leur TF peut être calculée en élargissant son champ d'application aux distributions
- Dirac et Constante : $\delta(t) \leftrightarrow 1$ et $x(t) = C \leftrightarrow X(f) = C\delta(f)$ (et $X(\omega) = 2\pi C\delta(\omega)$)
- Par translation : $\delta(t-\tau) \leftrightarrow \exp(-j2\pi f\tau)$ $\exp(-j2\pi f_0 t) \leftrightarrow \delta(f-f_0)$
- Echelon : $\mathbf{1}(t) \leftrightarrow \begin{cases} \delta(f)/2 & f = 0 \\ \delta(f)/2 + 1/(j2\pi f) & f \neq 0 \end{cases}$
- Pour les signaux périodiques, on peut utiliser directement la série de Fourier.
- Pour les fonctions cos et sin, on remarque :

$$\begin{split} TF[A\cos(2\pi f_0 t)] &= TF[\frac{C}{2}\exp(j2\pi f_0 t)] + TF[\frac{C}{2}\exp(-j2\pi f_0 t)] \\ &= \frac{C}{2}\left(\delta(f+f_0) + \delta(f-f_0)\right) \\ TF[A\sin(2\pi f_0 t)] &= j\frac{C}{2}\left(\delta(f+f_0) - \delta(f-f_0)\right) \end{split}$$

- Du dév. en série de Fourier vers la transformée de Fourier (TF)
- Propriétés de la TF
- Existence de la TF
- Corrélation et densité spectrale
- Cas des signaux à temps discret

Fonctions d'intercorrélation et d'autocorrélation

Cas des signaux continus à E finie

Du DSF à la TF

⇒Tous les signaux de cette classe possèdent une Transformée de Fourier

Fonction d'intercorrélation

Les signaux x et y sont orthogonaux (ou non-corrélés) pour chaque valeur de τ où la fonct. d'intercorrélation s'annule.

$$r_{xy}(\tau) = \int_{-\infty}^{+\infty} x^*(t)y(t+\tau)dt = x^*(-\tau) * y(\tau)$$

Propriété : $r_{xy}(\tau) = r_{yx}^*(-\tau)$

Interprétation : mesure de similitude de forme et de position de 2 signaux

Fonction d'autocorrélation (FA)

$$r_x(\tau) = \int_{-\tau}^{+\infty} x^*(t)x(t+\tau)dt$$

Propriétés :

- $r_x(0) = ||x||^2 = E_x = \max_{\tau} (r_x(\tau))$
- \blacksquare si x(t) est réel, sa FA est réelle et paire

Densité spectrale d'énergie

Cas des signaux continus à E finie

⇒La densité spectrale d'énergie d'un signal est égale à la TF de sa FA

$$\Phi_x(f) = \mathsf{TF}[r_x(\tau)]$$

D'après les résultats précédents, on a :

$$\Phi_x(f) = \mathsf{TF}[x^*(-\tau) * x(\tau)] = X^*(f)X(f) = |X(f)|^2$$

Lien avec l'énergie totale du signal

$$E_x = r_x(0) = \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} \Phi_x(f) df$$

car $r_x(\tau) = \mathsf{TF}^{-1}[\Phi_x(f)] = \int_{-\infty}^{+\infty} |\Phi_x(f)e^{j2\pi f\tau}df$ et $E_x = r_x(0)$

⇒L'énergie totale du signal peut aussi se calculer en intégrant sa distribution fréquentielle (Identité de Parseval), qui est donc appelée densité spectrale d'énergie.

Propriété : si x(t) est réel, sa FA est réelle et paire \Rightarrow donc sa TF l'est également :

Magalie THOMASSIN (TELECOM Nancy 1re année)

 $\Phi_x(f) = \Phi_x(-f)$

Fonctions d'intercorrélation et d'autocorrélation

Cas des signaux continus à P finie ($E_x = \infty$)

⇒Corrélation des signaux à puissance moyenne finie non-nulle

Fonction d'intercorrélation

$$\tilde{r}_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x^*(t) y(t+\tau) dt$$

Avec cette déf., les fonctions d'inter- et d'autocorrélation possèdent les mêmes propriétés que celles des signaux à énergie finie.

Remarque : pour 2 signaux T-périodiques, la limite disparait dans la relation précédente La FA d'un signal périodique l'est également.

Densité spectrale de puissance (DSP)

Pour les signaux continus à P finie $(E_x = \infty)$

Densité spectrale de puissance

$$\tilde{\Phi}_x(f) = \mathsf{TF}[\tilde{r}_x(\tau)]$$

Lien avec la puissance totale du signal

Pour $\tau = 0$, on obtient :

$$P_x = \tilde{r}_x(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} |x(t)|^2 dt = \int_{-\infty}^{\infty} \tilde{\Phi}_x(f) df$$

 \Rightarrow La fonction $ilde{\Phi}_x(f)$ représente donc bien la distribution fréquentielle de la puissance totale du signal. Contrairement au cas du spectre d'énergie, la DSP n'est pas égale au carré du module de la TF du signal. Toutefois, on peut établir :

$$\tilde{\Phi}_x(f) = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2$$

où $X_T(f)$ est la TF du signal à E finie constitué par la portion de x(t) comprise entre -T/2 et T/2. TELECOM Hancu

Si x(t) est T-périodique, $\tilde{\Phi}_x(f) = \frac{1}{T^2} |X_T(f)|^2 . \delta_{1/T}(f)$ Magalie THOMASSIN (TELECOM Nancy 1re année)

- Du dév. en série de Fourier vers la transformée de Fourier (TF)
- Propriétés de la TF
- Existence de la TF
- 4 Corrélation et densité spectrale
- 5 Cas des signaux à temps discret

Transformée de Fourier à temps discret

Définition

La TF d'un signal discret x(k) $(k \in \mathbb{Z})$ est définie par :

$$X(f) = \sum_{k=-\infty}^{+\infty} x(k)e^{-j2\pi kf} \text{ ou } X(\omega) = \sum_{k=-\infty}^{+\infty} x(k)e^{-j\omega k}$$

Existence

On admettra que X(f) existe pour tous les signaux à énergie finie de carré sommable :

$$\sum_{k=-\infty}^{+\infty} |x(k)| < \infty$$

Propriété

La TF d'un signal à temps discret est périodique, de période 1 :

$$X(f+1) = \sum_{k=-\infty}^{+\infty} x(k)e^{-j2\pi k(f+1)} = \sum_{k=-\infty}^{+\infty} x(k)e^{-j2\pi kf} \underbrace{e^{-j2\pi k}}_{-1} = X(f)$$

Cas des signaux à temps discret

- \Rightarrow Tout intervalle de longueur 1 est suffisant pour décrire X(f)On utilise généralement l'intervalle principal [-1/2, 1/2]
 - X(f) étant périodique, on peut considérer la déf. précédente comme son Dév. en Série de Fourier
 - $\mathbf{x}(k)$ correspond alors aux coeff. de ce développement :

Transformée de Fourier inverse

$$x(k)=\frac{1}{F}\int_{-F/2}^{F/2}X(f)e^{j2\pi kf}df \text{ où }F \text{ est la période de X(f), donc ici }F=1$$

$$=\int_{-1/2}^{1/2}X(f)e^{j2\pi kf}df$$

Fonctions d'inter- et d'autocorrélation

Fonction d'intercorrelation

$$r_{xy}(n) = \underbrace{\sum_{k=-\infty}^{+\infty} x^*(k)y(k+n)}_{x^*(-n)*y(n)} = \underbrace{\sum_{k=-\infty}^{+\infty} x^*(k-n)y(k)}_{y(n)*x^*(-n)} = r_{xy}^*(-n)$$

Corrélation et densité spectrale

Fonction d'autocorrelation

$$r_x(n) = r_{xx}(n) = \underbrace{\sum_{k=-\infty}^{+\infty} x^*(k)x(k+n)}_{x^*(-n)*x(n)}$$

⇒On retrouve les propriétés obtenues avec les signaux continus.

Spectre d'énergie

Spectre d'énergie d'un signal à temps discret x(k)

$$\Phi_x(f) = \mathsf{TF}[r_x(n)] = X^*(f)X(f) = |X(f)|^2$$

Remarque

On a donc parallelement : $r_x(n) = \mathsf{TF}^{-1}[\Phi_x(f)] = \int_{-1/2}^{1/2} \Phi_x(f) e^{j2\pi nf} df$

Energie d'un signal à temps discret

$$E_x = \sum_{k=-\infty}^{+\infty} |x(k)|^2 = \sum_{k=-\infty}^{+\infty} x^*(k)x(k)$$
$$= r_x(0) = \max_n(r_x(n))$$
$$= \int_{-1/2}^{1/2} \Phi_x(f)df$$

Propriétés de la TF à temps discret

Translation

$$x(k)e^{j2\pi f_0k} \leftrightarrow X(f-f_0)$$
 $x(k-k_0) \leftrightarrow X(f)e^{-j2\pi fk_0}$

Convolution

- $\mathbf{x}(k) * y(x) \leftrightarrow X(f).Y(f)$ (convolution discrète)
- $\mathbf{x}(k).y(k) \leftrightarrow X(f) \overset{F=1}{*} Y(f) = \int_{\mathbf{x}} X(f')Y(f-f')df' = \text{produit de convolution périodique}$

En effet, le produit de conv. de signaux périodiques (discrets ou continus) ne converge pas et doit être remplacé par un produit périodique, calculé sur une seule période (les signaux doivent donc avoir la même période)

Remarque

Dans les applications pratiques numériques, cette TF n'est directement utilisable car :

- elle nécessite une infinité de valeurs
- la variable f, continue, n'est pas compatible avec la nature discrète des syst. numériques
- ⇒ Version modifiée : la Transformée de Fourier Discrète (TFD)

TFD

Corrélation et densité spectrale

Plan

- Du dév. en série de Fourier vers la transformée de Fourier (TF)
- Propriétés de la TF
- Existence de la TF
- 4 Corrélation et densité spectrale
- Cas des signaux à temps discret
- Transformée de Fourier Discrète (TFD)

Cas des signaux à temps discret

Définitions

■ Rappel des définitions de la TF à temps discret :

$$X(f) = \sum_{k=-\infty}^{+\infty} x(k)e^{-j2\pi kf} \quad \text{ et } \quad x(k) = \int_0^1 X(f)e^{j2\pi kf}df$$

■ On suppose le signal x(k) de durée limitée et on discrétise la fréquence (échantillonnage dans le domaine freq.). Si on considère N points entre 0 et 1, on obtient alors un pas d'échantillonnage $\Delta f = 1/N$ et on a :

$$f = \frac{n}{N} \text{ avec } n = 0, 1, \dots, N - 1$$

Les deux relations précédentes deviennent :

$$X(\frac{n}{N}) = X(n) = \sum_{k=-\infty}^{+\infty} x(k) e^{-j2\pi k \frac{n}{N}} \quad \text{et} \quad \hat{x}(k) = \frac{1}{N} \sum_{n=0}^{N-1} X(n) e^{j2\pi k \frac{n}{N}}$$

- Remarque : $\hat{x}(k)$ est N-périodique
- lacksquare On montre que $\hat{x}(k)=x(k)$ sur une période si x(k) s'annule à partir de k=N

Propriétés de la TF Existence Corrélation et densité spectrale Cas des signaux à temps discret

Propriétés

Du DSF à la TF

Voir aide-mémoire p.17

TFD