
Mastering your Linux:
C and Shell Programming

Martin Quinson <martin.quinson@loria.fr>

École Supérieure d’Informatique et Applications de Lorraine – 1ère année

2013-2014

Introduction

Course Goals
I Help you mastering your thid programming language

I Basics about the syntax
I Caveats (of memory management, amongst other)
I Get some good style

I Help you mastering your Linux box (or any other UNIX-based one)
I Fluent use of the terminal
I Non-trivial command lines
I Simple scripts

Prerequisite

I Algorithmic Background: you cannot program without that

I Scala/Java Programming: we won’t learn to program, but how to write it in C

Course Context at Telecom Nancy

I Part of Programing Track (courses PPP, TOP, POO, SD, CSH)

I Starts a new track on Operating System (courses CSH, RS, RSA)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Introduction 2/127

Administrativae

Module Time Table
I Three lectures

I 7 practical labs + 3 repetition sessions (+ exam): The C language

I 6 practical labs + 2 small group lectures (+ exam): Shell Scripting

Evaluation
I Test on table (partiel) on C language

I What: Content of lectures and labs (of course)
I When: someday in march (check ADE agenda)
I Allowed material during test: one A4 sheet of paper only

I Hand-written (not typed)
I From you (no photocopy)

I Homework: Do whatever you want (in C)

I Test on table on Shell Scripting

I When: someday in may (check ADE agenda)
I (Ask Suzanne Collin for details)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Introduction 3/127

About me

Martin Quinson
I Study: Université de Saint Étienne, France

I PhD: Grids and HPC in 2003 (team Graal of INRIA / ENS-Lyon, France)

I Since 2005:
I Assistant professor at Telecom Nancy (Université de Lorraine)
I Researcher of AlGorille team of LORIA/Inria

I Research interests:
I Context: Distributed Systems (Grids, HPC, Clusters)
I Main: Simulation of Distributed Applications (SimGrid project)
I Others: Experimental Methodology, Model-Checking, ...

I Teaching duties:

1A: PPP: introduction to Java; TOP: Technics and tOols for Programming;
CSH: C as Second Language (and Shell)

2A: RS: System Programming (and Networking)
3A: Peer-to-Peer Systems and Advanced Distributed Algorithms (master)

I More infos:
I http://www.loria.fr/~quinson (Martin.Quinson@loria.fr)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Introduction 4/127

http://www.loria.fr/~quinson
Martin.Quinson@loria.fr

References: Courses on Internet

I Introduction to Systems Programming (C. Grothoff)
C covered, but not only.

http://grothoff.org/christian/teaching/2009/2355/

I C / Shell (A. Crouzil, J.D. Durou et Ph. Joly; U. Paul Sabatier, Toulouse)
Good coverage of the whole module (in French).

http://www.irit.fr/ACTIVITES/EQ_TCI/ENSEIGNEMENT/CetSHELL/

I Support de Cours de Langage C (Christian Bac; Telecom SudParis)
The C Language (in French).

http://picolibre.int-evry.fr/projects/svn/coursc/

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Introduction 5/127

http://grothoff.org/christian/teaching/2009/2355/
http://www.irit.fr/ACTIVITES/EQ_TCI/ENSEIGNEMENT/CetSHELL/
http://picolibre.int-evry.fr/projects/svn/coursc/

Table of Contents

I Introduction and Generalities
I Introduction; Motivation; History.

1 Part I: C as Second Language
I Syntax and Basic usage

I Introduction; First C program and compilation; Syntax, printf; C vs. Java.
I Memory Management in C

I Variable visibility, storage class; Malloc and friends; Debugging problems.
I Advanced C Topics

I Modularity in C; Makefile; Performance tuning; Game programming.

2 Part II: Shell Scripting
I Low Script-fu knowledge

I Introduction; First shell “scripts”; Redirecting I/O & Pipes; basic commands.
I Medium Script-fu knowledge

I More Syntax for Advanced Scripts; Not so basic commands.
I Advanced Script-fu knowledge

I Shell functions; Variable Substitutions; Sub-shells; Arrays.

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Introduction 6/127

Chapter 1

C and Unix

Introduction
C? UNIX? What is all this about?
Why do we need to study C?
Why do we need to study C and UNIX together?

C as Second Language
C vs. Java
How to survive in C?
Your first C program

First steps in Unix
Désignation des fichiers
Protection des fichiers
Using the terminal

C? UNIX? What is all this about?

Let’s go for a little pool, please

I Who never heard the word “Unix” before arriving at Telecom Nancy?

I Who in the room have Linux installed on a computer at home?

I Who have a network of Linux boxes at home?

Telecom Nancy population very heterogeneous

I Usually about 1
3 didn’t heard about Unix before arriving, and 1

3 use it already

I We are here to level everybody

I Yep, some of you already know the first lectures (go get some maths)

I But be patient, soon, everyone will be lost (including YOU!)

Further Quizz
I Could you define Unix in a word?

That’s an Operating System

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 8/127

C? UNIX? What is all this about?

Let’s go for a little pool, please

I Who never heard the word “Unix” before arriving at Telecom Nancy?

I Who in the room have Linux installed on a computer at home?

I Who have a network of Linux boxes at home?

Telecom Nancy population very heterogeneous

I Usually about 1
3 didn’t heard about Unix before arriving, and 1

3 use it already

I We are here to level everybody

I Yep, some of you already know the first lectures (go get some maths)

I But be patient, soon, everyone will be lost (including YOU!)

Further Quizz
I Could you define Unix in a word?

That’s an Operating System

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 8/127

C? UNIX? What is all this about?

Let’s go for a little pool, please

I Who never heard the word “Unix” before arriving at Telecom Nancy?

I Who in the room have Linux installed on a computer at home?

I Who have a network of Linux boxes at home?

Telecom Nancy population very heterogeneous

I Usually about 1
3 didn’t heard about Unix before arriving, and 1

3 use it already

I We are here to level everybody

I Yep, some of you already know the first lectures (go get some maths)

I But be patient, soon, everyone will be lost (including YOU!)

Further Quizz
I Could you define Unix in a word?

That’s an Operating System

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 8/127

C? UNIX? What is all this about?

Let’s go for a little pool, please

I Who never heard the word “Unix” before arriving at Telecom Nancy?

I Who in the room have Linux installed on a computer at home?

I Who have a network of Linux boxes at home?

Telecom Nancy population very heterogeneous

I Usually about 1
3 didn’t heard about Unix before arriving, and 1

3 use it already

I We are here to level everybody

I Yep, some of you already know the first lectures (go get some maths)

I But be patient, soon, everyone will be lost (including YOU!)

Further Quizz
I Could you define Unix in a word?

That’s an Operating System

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 8/127

C? UNIX? What is all this about?

Let’s go for a little pool, please

I Who never heard the word “Unix” before arriving at Telecom Nancy?

I Who in the room have Linux installed on a computer at home?

I Who have a network of Linux boxes at home?

Telecom Nancy population very heterogeneous

I Usually about 1
3 didn’t heard about Unix before arriving, and 1

3 use it already

I We are here to level everybody

I Yep, some of you already know the first lectures (go get some maths)

I But be patient, soon, everyone will be lost (including YOU!)

Further Quizz
I Could you define Unix in a word?

That’s an Operating System

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 8/127

C? UNIX? What is all this about?

Let’s go for a little pool, please

I Who never heard the word “Unix” before arriving at Telecom Nancy?

I Who in the room have Linux installed on a computer at home?

I Who have a network of Linux boxes at home?

Telecom Nancy population very heterogeneous

I Usually about 1
3 didn’t heard about Unix before arriving, and 1

3 use it already

I We are here to level everybody

I Yep, some of you already know the first lectures (go get some maths)

I But be patient, soon, everyone will be lost (including YOU!)

Further Quizz
I Could you define Unix in a word? That’s an Operating System

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 8/127

Operating System

What is an Operating System?

I That’s the software between the applications and the hardware

I Handles (and protects) the resources

I Offers an unified interface to the applications

Hard disk

Sound

Graphic card

Operating System

Firefox VLCEmacs

Hardware

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 9/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?

Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?

Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count

Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?

Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1.

It’s the most widespread OS (if you include servers, embedded, etc ;)

2.

Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?

Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?

Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count

Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?

Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1.

It’s the most widespread OS (if you include servers, embedded, etc ;)

2.

Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?
Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?

Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count

Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?

Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1.

It’s the most widespread OS (if you include servers, embedded, etc ;)

2.

Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?
Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?
Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count

Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?

Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1.

It’s the most widespread OS (if you include servers, embedded, etc ;)

2.

Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?
Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?
Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count
Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?

Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1.

It’s the most widespread OS (if you include servers, embedded, etc ;)

2.

Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?
Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?
Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count
Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?
Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1.

It’s the most widespread OS (if you include servers, embedded, etc ;)

2.

Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?
Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?
Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count
Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?
Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1.

It’s the most widespread OS (if you include servers, embedded, etc ;)

2.

Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?
Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?
Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count
Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?
Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1. It’s the most widespread OS (if you include servers, embedded, etc ;)

2.

Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Operating System Basics

I What’s the Operating System on neptune host (where you do your labs)?

That’s Linux

I What’s the difference between that and the Unix we spoke about before?
Linux ∈ Unix , ie Linux is one member of the greater Unix family

I What other Operating System you know?
Windows, Mac OS are the most popular

I Any idea of the amount of existing Operating System? Guess the count
Writing an OS is a classical practical lab, so there’s really a lot of them

I What’s the link between Mac OS and the other OSes?
Mac OS 9 was a specific OS family (but it’s dead now); Mac OS X is a Unix

I Why don’t we speak of Windows instead?

(not ’cause it sucks) Because Windows is quite too different from Unix

I If so, why do we speak of Unix anyway?

1. It’s the most widespread OS (if you include servers, embedded, etc ;)

2. Because it’s heavily connected to C (Why should we study the C language?)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 10/127

Why should we study the C language? Huge impact

I C++ is an object extension of C (you cannot master C++ without C)

I Java is some sort of (safe) subset of C++; C# is a variation of Java

I Several other languages have C-like syntax (Perl, Python, Ruby, PHP)

1
9
5
6

1
9
5
8

1
9
6
0

1
9
6
2

1
9
6
4

1
9
6
6

1
9
6
8

1
9
7
0

1
9
7
2

1
9
7
4

1
9
7
6

1
9
7
8

1
9
8
0

1
9
8
2

1
9
8
4

1
9
8
6

1
9
8
8

1
9
9
0

1
9
9
2

1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

S
m

a
llt

a
lk

 8
0

R
u
b
y

C
#
 2

.0

S
M

L

C
a
m

l

O
C

a
m

l

P
e
rl

P
e
rl
 5

J
a
v
a
 2

 (
v
1
.5

 b
e
ta

)

F
o
rt

ra
n
 I

P
L
/I

A
lg

o
l
6
0

F
o
rt

ra
n
 7

7

S
c
h
e
m

e C
o
m

m
o
n
 L

is
p

S
c
h
e
m

e
 R

5
R

S

P
a
s
c
a
l F

o
rt

ra
n
 9

0

P
ro

lo
g

P
y
th

o
n

P
y
th

o
n
 2

.0

S
m

a
llt

a
lk

C
 (

K
&

R
)

T
c
l

C
+

+

C
O

B
O

L

C
#

L
is

p

J
a
v
a

J
a
v
a
S

c
ri
p
t

C
+

+
 (

IS
O

)
H

a
s
k
e
ll

9
8

A
d
a
 8

3

E
if
fe

l

M
L

h
t
t
p
:
/
/
m
e
r
d
.
s
o
u
r
c
e
f
o
r
g
e
.
n
e
t
/
p
i
x
e
l
/
l
a
n
g
u
a
g
e
-
s
t
u
d
y
/
d
i
a
g
r
a
m
.
h
t
m
l

S
ee

a
ls

o
h
t
t
p
:
/
/
w
w
w
.
d
i
g
i
b
a
r
n
.
c
o
m
/
c
o
l
l
e
c
t
i
o
n
s
/
p
o
s
t
e
r
s
/
t
o
n
g
u
e
s
/

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 11/127

http://merd.sourceforge.net/pixel/language-study/diagram.html
http://www.digibarn.com/collections/posters/tongues/

Why should we study the C language? Widespread

I De facto standard for System Programming: Windows, OS X, Linux, BSD in C
I Counting SourceForge projects. Java: 18%; C++: 17.9%; C: 15.9%

h
t
t
p
:
/
/
w
w
w
.
c
s
.
b
e
r
k
e
l
e
y
.
e
d
u
/

~
f
l
a
b
/
l
a
n
g
u
a
g
e
s
.
h
t
m
l

I Counting SLOC in Debian. Quite different numbers...

other

16%

C

49%

C++

21%
shell

9% Java
5%

More details:
http://debian-counting.libresoft.es/lenny/

See also: http://www.dwheeler.com/sloc/

I Big codes are in C/C++

I Toy projects tend to be in Java

(but things change)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 12/127

http://www.cs.berkeley.edu/
~flab/languages.html
http://debian-counting.libresoft.es/lenny/
http://www.dwheeler.com/sloc/

Why should we study the C language? Fast

I C program typically execute faster than in other programs

h
t
t
p
:
/
/
s
h
o
o
t
o
u
t
.
a
l
i
o
t
h
.
d
e
b
i
a
n
.
o
r
g
/

I One could argue that this is because it has the best tools, but not only

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 13/127

http://shootout.alioth.debian.org/

Studying the C language for educational purpose

Understanding C helps you understanding the system as a whole

I C is the closest high-level language to the machine

I Every OS are written in C, so lower interface is in C/C++ too

I OS/hardware co-evolution: C conceptual model describes most hardware

Understanding C helps you writing better Java code

I Java/.Net/Perl/etc hide underlying low-level mechanism

I But these mechanism can be very important (to performance for example)

I To understand how objects get passed by ref, realize that they are pointers

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 14/127

Why do we need to study C and UNIX together?

Because they were invented together!

in C

TCP/IP

open source
shared source

closed source

HP-UX

Rewrite

NetBSD

2000 2010199019801970

FreeBSD

OpenBSD

Bill Joy SunOS (Stanford) Solaris (SUN)

NextStep

Open Solaris

Xenix (Microsoft/SCO)

Richard Stallman

MacOS X

Darwin

GNU project

Linux

Minix

Linus Torvalds

Berkeley Software DistributionBSD

Thompson & Richie (Bell Labs)

Unix Time-Sharing System

System V UnixWare (Univel/SCO)

AT&T

Plan 9

Andrew Tannenbaum

AIX (IBM)

(SGI)IRIX

z/OS (IBM)OS/360 (for mainframes)

Services For Unix
(Microsoft)

Unix history

1965 MULTICS: ambitious system
project (Bell Labs)

1969 Bell Labs give up Multics,
Unics begins

1970 Unix: Official Bell Labs project
1973 Rewrite in C

Distribution to universities
Sold by AT&T

80-90 Unix War: BSD vs. System V

90-10 Normalization Effort (POSIX)

C history

1967 BCPL used at Bell Labs;
1968 B [Thompson]: simplification
1971 C K&R (somehow typed)
1983 C++: object oriented
1989 ANSI C; 1990: ISO C (C90)

1999 ISO C updated (C99)
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 15/127

What is Special About C?

Low Level: sort of abstract assembly language of historical processors

I Was invented on a PDP-11 with 24kb of memory: KISS!
I Process memory visible as an array of bytes
I Nothing in the language will prevent you from doing (really) stupid things

C combines the power of assembler with the portability of assembler.

Extensible: most higher-level features doable in C

I Self-modifying code, Introspection, Code migration, etc. (but all by yourself)
I (actually, JVM partially written in C/C++)

If you can’t do it in ANSI C, it isn’t worth doing.

Relatively Stable: almost backward compatible since seventies

I Other languages got heavily lifted too often (but some heritages unpleasant)

C has hardly any runtime system

I Small footprint, easily ported to new architectures (need to reinvent the wheel)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 16/127

So, should we use C once studied?

Benefits
I More control over the execution behaviour of programs

I More opportunity for performance tuning

I Access to low-level features of system

Disadvantages

I Need to do your own memory management

I Typically takes more lines of code to accomplish each task

I More opportunity to make mistakes

Summary

I C is a powerful programming tool for experts

I Presents many potential hazards for novices

I Helps you to understand low-level execution ideas

I Helps transforming you from a novice to an expert

; Use it when you need it, avoid it when you don’t need it

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 17/127

Chapter 1

C and Unix

Introduction
C? UNIX? What is all this about?
Why do we need to study C?
Why do we need to study C and UNIX together?

C as Second Language
C vs. Java
How to survive in C?
Your first C program

First steps in Unix
Désignation des fichiers
Protection des fichiers
Using the terminal

C as Second Language

Similarities between C and Java
I Operators

I Arithmetic (+,-,*,/,% ; ++,- -,*=,. . .); Bitwise (&,|,ˆ,!,<<,>>)
I Relational (<,>,<=,>=,==,!=); Logical &&, ||, !, (a?b:c)

I Keywords and Language Constructs
I if(){ } else { }
I while(){ }
I switch() { case 0: ... }

I for(i=0; i<100; i++){ }
I do { } while()

I break, continue, return

I Basic (primitive) types: void, int, short, long; float, double; char.
No boolean, use int instead (0=False; anything else=True)

I Function declarations: int fact(int a){return a==0 ? 1 : a*fact(a-1);}

Differences between C and Java
I No exception: usually rely on int error code instead (and usually a pain)

I No class/package/interface: code modularity different (not compiler-enforced)

I No garbage collector: alloc and free manually needed memory (incredible pain)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 19/127

C as Second Language

C seems familiar when you know Java

I Actually, that’s Java which is highly inspired from C/C++
I Feels like a Java without any object but with full access to everything

C is like Java without comfort and without any protections

I Standard library is poor (but huge amount of extensions)
I Compiler is incredibly permissive (by default)
I It’s possible to shoot yourself in the foot in Java, that’s common in C
I On error, Java displays a stack trace, C spits “segfault” or “invalid free” errors

Unix was not designed to stop people from doing stupid things,
because that would also stop them from doing clever things.

– Doug Gwyn

C main specificities in a Nutshell

I Memory fully accessible through pointers
I Arrays are handled as pointer to memory
I Declaration syntax very similar to usage syntax (to the price of readability)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 20/127

How to survive in C?

Use the tools that can help you

I Use the compiler warning flags -Wall mandatory, other usefull

I Use a proper editor (able of colorization, auto-indent, compile easily)
I Good editors: emacs & vi (historical), Eclipse/CDT (my personal favorite)
I Bad editor: gedit (not good for text, BAD for code)

I The debugger (gdb) must become your friend quickly

I valgrind is a piece of magic (C coding without it is masochism)

Don’t assume you’re a genius (ie, don’t do stupid things — yet)

I Pay attention to the modularity of your code (not compiler-enforced anyhow)

I Document your code (with readable comments, or doxygen for bigger projects)

I Get some discipline (coding convention), and stick to it
I Symbol naming (my variable or myVariable), indentation, etc.
I Which one is not very important. Pick one, and stick to it

I Keep it simple: it’s easy to write unreadable C code

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 21/127

Bad Style Coding as a Game

The International Obfuscated C Code Contest (www.ioccc.org)

I Yearly contest of intentionally obfuscated codes (in C; exist for other languages)

Example:

Full (interactive) Maze Escape Game

(arachnid, 2004 entry)
#include <ncurses.h>/***/

int m[256] [256],a

,b ;;; ;;; WINDOW*w; char*l="" "\176qxl" "q" "q" "k" "w\

xm" "x" "t" "j" "v" "u" "n" ,Q[

]= "Z" "pt!ftd‘" "qdc!‘eu" "dq!$c!nnwf"/** *** */"t\040\t";c(

int u , int v){ v?m [u] [v-

1] |=2,m[u][v-1] & 48?W][v-1] & 15]]):0:0;u?m[u -1][v]|=1 ,m[

u- 1][v]& 48? W-1][v]&

15]]):0:0;v< 255 ?m[u][v+1]|=8,m[u][v+1]& 48? W][v+1]&15]]

):0 :0; u < 255 ?m[u+1][v]|=

4,m[u+1][v]&48?W+1][v]&15]]):0:0;W][v]& 15]]);}cu(char*q){ return

*q ?cu (q+ 1)& 1?q [0] ++:

q[0]-- :1; }d(int u , int/**/v, int/**/x, int y){ int

Y=y -v, X=x -u; int S,s ;Y< 0?Y =-Y ,s,

s=- 1:(s=1);X<0?X=-X,S =-1 :(S= 1); Y<<= 1;X<<=1; if(X>Y){

int f=Y -(X >>1);; while(u!= x){

f>= 0?v+=s,f-=X:0;u +=S ;f+= Y;m[u][v]|=32;mvwaddch(w,v ,u, m[u

][v]& 64? 60: 46) ;if (m[u][

v]&16){c(u,v);; ;;; ;;; return;}} }else{int f=X -(Y>>1);; while

(v !=y){f >=0 ?u +=S, f-= Y:0

;v +=s ;f+=X;m[u][v]|= 32;mvwaddch(w,v ,u,m[u][v]&64?60:46);if(m[u

][v]& 16) {c(u,v);

; return;;;}}}}Z(int/**/a, int b){ }e(int/**/y,int/**/ x){

int i ; for (i= a;i <=a

+S;i++)d(y,x,i,b),d(y,x,i,b+L);for(i=b;i<=b+L;i++)d(y,x,a,i),d(y,x,a+ S,i

); ;;; ;;; ;;; ;;; ;

mvwaddch(w,x,y,64); ;;; ;;; ;;; prefresh(w,b,a,0,0 ,L- 1,S-1

);} main(int V , char *C[

]){FILE*f= fopen(V==1?"arachnid.c"/**/ :C[1],"r");int/**/x,y,c,

(source code cut here)

Screenshoot

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 22/127

www.ioccc.org

Bad Style Coding as a Game

The International Obfuscated C Code Contest (www.ioccc.org)

I Yearly contest of intentionally obfuscated codes (in C; exist for other languages)

Example: Full (interactive) Maze Escape Game (arachnid, 2004 entry)
#include <ncurses.h>/***/

int m[256] [256],a

,b ;;; ;;; WINDOW*w; char*l="" "\176qxl" "q" "q" "k" "w\

xm" "x" "t" "j" "v" "u" "n" ,Q[

]= "Z" "pt!ftd‘" "qdc!‘eu" "dq!$c!nnwf"/** *** */"t\040\t";c(

int u , int v){ v?m [u] [v-

1] |=2,m[u][v-1] & 48?W][v-1] & 15]]):0:0;u?m[u -1][v]|=1 ,m[

u- 1][v]& 48? W-1][v]&

15]]):0:0;v< 255 ?m[u][v+1]|=8,m[u][v+1]& 48? W][v+1]&15]]

):0 :0; u < 255 ?m[u+1][v]|=

4,m[u+1][v]&48?W+1][v]&15]]):0:0;W][v]& 15]]);}cu(char*q){ return

*q ?cu (q+ 1)& 1?q [0] ++:

q[0]-- :1; }d(int u , int/**/v, int/**/x, int y){ int

Y=y -v, X=x -u; int S,s ;Y< 0?Y =-Y ,s,

s=- 1:(s=1);X<0?X=-X,S =-1 :(S= 1); Y<<= 1;X<<=1; if(X>Y){

int f=Y -(X >>1);; while(u!= x){

f>= 0?v+=s,f-=X:0;u +=S ;f+= Y;m[u][v]|=32;mvwaddch(w,v ,u, m[u

][v]& 64? 60: 46) ;if (m[u][

v]&16){c(u,v);; ;;; ;;; return;}} }else{int f=X -(Y>>1);; while

(v !=y){f >=0 ?u +=S, f-= Y:0

;v +=s ;f+=X;m[u][v]|= 32;mvwaddch(w,v ,u,m[u][v]&64?60:46);if(m[u

][v]& 16) {c(u,v);

; return;;;}}}}Z(int/**/a, int b){ }e(int/**/y,int/**/ x){

int i ; for (i= a;i <=a

+S;i++)d(y,x,i,b),d(y,x,i,b+L);for(i=b;i<=b+L;i++)d(y,x,a,i),d(y,x,a+ S,i

); ;;; ;;; ;;; ;;; ;

mvwaddch(w,x,y,64); ;;; ;;; ;;; prefresh(w,b,a,0,0 ,L- 1,S-1

);} main(int V , char *C[

]){FILE*f= fopen(V==1?"arachnid.c"/**/ :C[1],"r");int/**/x,y,c,

(source code cut here)

Screenshoot

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 22/127

www.ioccc.org

Bad Style Coding as a Game

The International Obfuscated C Code Contest (www.ioccc.org)

I Yearly contest of intentionally obfuscated codes (in C; exist for other languages)

Example: Full (interactive) Maze Escape Game (arachnid, 2004 entry)
#include <ncurses.h>/***/

int m[256] [256],a

,b ;;; ;;; WINDOW*w; char*l="" "\176qxl" "q" "q" "k" "w\

xm" "x" "t" "j" "v" "u" "n" ,Q[

]= "Z" "pt!ftd‘" "qdc!‘eu" "dq!$c!nnwf"/** *** */"t\040\t";c(

int u , int v){ v?m [u] [v-

1] |=2,m[u][v-1] & 48?W][v-1] & 15]]):0:0;u?m[u -1][v]|=1 ,m[

u- 1][v]& 48? W-1][v]&

15]]):0:0;v< 255 ?m[u][v+1]|=8,m[u][v+1]& 48? W][v+1]&15]]

):0 :0; u < 255 ?m[u+1][v]|=

4,m[u+1][v]&48?W+1][v]&15]]):0:0;W][v]& 15]]);}cu(char*q){ return

*q ?cu (q+ 1)& 1?q [0] ++:

q[0]-- :1; }d(int u , int/**/v, int/**/x, int y){ int

Y=y -v, X=x -u; int S,s ;Y< 0?Y =-Y ,s,

s=- 1:(s=1);X<0?X=-X,S =-1 :(S= 1); Y<<= 1;X<<=1; if(X>Y){

int f=Y -(X >>1);; while(u!= x){

f>= 0?v+=s,f-=X:0;u +=S ;f+= Y;m[u][v]|=32;mvwaddch(w,v ,u, m[u

][v]& 64? 60: 46) ;if (m[u][

v]&16){c(u,v);; ;;; ;;; return;}} }else{int f=X -(Y>>1);; while

(v !=y){f >=0 ?u +=S, f-= Y:0

;v +=s ;f+=X;m[u][v]|= 32;mvwaddch(w,v ,u,m[u][v]&64?60:46);if(m[u

][v]& 16) {c(u,v);

; return;;;}}}}Z(int/**/a, int b){ }e(int/**/y,int/**/ x){

int i ; for (i= a;i <=a

+S;i++)d(y,x,i,b),d(y,x,i,b+L);for(i=b;i<=b+L;i++)d(y,x,a,i),d(y,x,a+ S,i

); ;;; ;;; ;;; ;;; ;

mvwaddch(w,x,y,64); ;;; ;;; ;;; prefresh(w,b,a,0,0 ,L- 1,S-1

);} main(int V , char *C[

]){FILE*f= fopen(V==1?"arachnid.c"/**/ :C[1],"r");int/**/x,y,c,

(source code cut here)

Screenshoot

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 22/127

www.ioccc.org

Recreational Obfuscation: Phillips entry of IOCCC’88
Program code

#include <stdio.h>

main(t,_,a)char *a;{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,

main(-86,0,a+1)+a)):1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13?

main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t,

"@n’+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#\

;#q#n+,/+k#;*+,/’r :’d*’3,}{w+K w’K:’+}e#’;dq#’l \

q#’+d’K#!/+k#;q#’r}eKK#}w’r}eKK{nl]’/#;#q#n’){)#}w’){){nl]’/+#n’;d}rw’ i;# \

){nl]!/n{n#’; r{#w’r nc{nl]’/#{l,+’K {rw’ iK{;[{nl]’/w#q#n’wk nw’ \

iwk{KK{nl]!/w{%’l##w#’ i; :{nl]’/*{q#’ld;r’}{nlwb!/*de}’c \

;;{nl’-{}rw]’/+,}##’*}#nc,’,#nw]’/+kd’+e}+;#’rdq#w! nr’/ ’) }+}{rl#’{n’ ’)# \

}’+}##(!!/")

:t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a==’/’)+t,_,a+1)

:0<t?main(2,2,"%s"):*a==’/’||main(0,main(-61,*a,

"!ek;dc i@bK’(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

Output

On the first day of Christmas my true love gave to me

a partridge in a pear tree.

On the second day of Christmas my true love gave to me

two turtle doves

and a partridge in a pear tree.

On the third day of Christmas my true love gave to me

three french hens, two turtle doves

and a partridge in a pear tree.

On the fourth day of Christmas my true love gave to me

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

On the fifth day of Christmas my true love gave to me

five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

On the sixth day of Christmas my true love gave to me

six geese a-laying, five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

On the seventh day of Christmas my true love gave to me

seven swans a-swimming,

six geese a-laying, five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

Output (cont)

On the eighth day of Christmas my true love gave to me

eight maids a-milking, seven swans a-swimming,

six geese a-laying, five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

On the ninth day of Christmas my true love gave to me

nine ladies dancing, eight maids a-milking, seven swans a-swimming,

six geese a-laying, five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

On the tenth day of Christmas my true love gave to me

ten lords a-leaping,

nine ladies dancing, eight maids a-milking, seven swans a-swimming,

six geese a-laying, five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

On the eleventh day of Christmas my true love gave to me

eleven pipers piping, ten lords a-leaping,

nine ladies dancing, eight maids a-milking, seven swans a-swimming,

six geese a-laying, five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

On the twelfth day of Christmas my true love gave to me

twelve drummers drumming, eleven pipers piping, ten lords a-leaping,

nine ladies dancing, eight maids a-milking, seven swans a-swimming,

six geese a-laying, five gold rings;

four calling birds, three french hens, two turtle doves

and a partridge in a pear tree.

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 23/127

Bad Style Coding as an Art

Another example

: Computing Integer Square Roots

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

It actually works
$./cheong 1234
35

(35× 35 = 1225; 35× 36 = 1296)

$./cheong 112233445566
335012

335012× 335012 = 112233040144

335013× 335013 = 112233710169

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 24/127

Bad Style Coding as an Art

Another example: Computing Integer Square Roots

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

It actually works
$./cheong 1234
35

(35× 35 = 1225; 35× 36 = 1296)

$./cheong 112233445566
335012

335012× 335012 = 112233040144

335013× 335013 = 112233710169

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 24/127

Bad Style Coding as an Art

Another example: Computing Interger Square Roots

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

It actually works
$./cheong 1234
35

(35× 35 = 1225; 35× 36 = 1296)

$./cheong 112233445566
335012

335012× 335012 = 112233040144

335013× 335013 = 112233710169

Author claim: code
self-documented. . .
#include <stdio.h>

int l;int main(int o,char **O,

int I){char c,*D=O[1];if(o>0){

for(l=0;D[l];D[l

++]-=10){D [l++]-=120;D[l]-=

110;while (!main(0,O,l))D[l]

+= 20; putchar((D[l]+1032)

/20) ;}putchar(10);}else{

c=o+ (D[I]+82)%10-(I>l/2)*

(D[I-l+I]+72)/10-9;D[I]+=I<0?0

:!(o=main(c/10,O,I-1))*((c+999

)%10-(D[I]+92)%10);}return o;}

It is an old observation that the best writers sometimes disregard
the rules of rhetoric. When they do so, however, the reader will
usually find in the sentence some compensating merit, attained at
the cost of the violation. Unless he is certain of doing as well,
he will probably do best to follow the rules.

– William Strunk, Jr. (1918)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 25/127

Bad Style Coding as an Art

Another example: Computing Interger Square Roots

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

It actually works
$./cheong 1234
35

(35× 35 = 1225; 35× 36 = 1296)

$./cheong 112233445566
335012

335012× 335012 = 112233040144

335013× 335013 = 112233710169

Author claim: code
self-documented. . .
#include <stdio.h>

int l;int main(int o,char **O,

int I){char c,*D=O[1];if(o>0){

for(l=0;D[l];D[l

++]-=10){D [l++]-=120;D[l]-=

110;while (!main(0,O,l))D[l]

+= 20; putchar((D[l]+1032)

/20) ;}putchar(10);}else{

c=o+ (D[I]+82)%10-(I>l/2)*

(D[I-l+I]+72)/10-9;D[I]+=I<0?0

:!(o=main(c/10,O,I-1))*((c+999

)%10-(D[I]+92)%10);}return o;}

It is an old observation that the best writers sometimes disregard
the rules of rhetoric. When they do so, however, the reader will
usually find in the sentence some compensating merit, attained at
the cost of the violation. Unless he is certain of doing as well,
he will probably do best to follow the rules.

– William Strunk, Jr. (1918)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 25/127

Last one, just for fun: dhyang IOCCC’00

Saitou Hajime image

that prints a prog that prints a prog that prints a prog . . .
Repeating endlessly ”aku soku zan”, Hajime’s motto meaning slay evil imediatly.

Source code

Output 1

Output 3

Output 2

Output 4 (=1)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 26/127

Last one, just for fun: dhyang IOCCC’00

Saitou Hajime image that prints a prog

that prints a prog that prints a prog . . .
Repeating endlessly ”aku soku zan”, Hajime’s motto meaning slay evil imediatly.

Source code Output 1

Output 3

Output 2

Output 4 (=1)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 26/127

Last one, just for fun: dhyang IOCCC’00

Saitou Hajime image that prints a prog that prints a prog

that prints a prog . . .
Repeating endlessly ”aku soku zan”, Hajime’s motto meaning slay evil imediatly.

Source code Output 1

Output 3

Output 2

Output 4 (=1)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 26/127

Last one, just for fun: dhyang IOCCC’00

Saitou Hajime image that prints a prog that prints a prog that prints a prog

. . .
Repeating endlessly ”aku soku zan”, Hajime’s motto meaning slay evil imediatly.

Source code Output 1

Output 3

Output 2

Output 4 (=1)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 26/127

Last one, just for fun: dhyang IOCCC’00

Saitou Hajime image that prints a prog that prints a prog that prints a prog . . .
Repeating endlessly ”aku soku zan”, Hajime’s motto meaning slay evil imediatly.

Source code Output 1

Output 3

Output 2

Output 4 (=1)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 26/127

Your first C program

The classical Hello World
hello.c

1 #include <stdio.h>

2 int main(int argc, char *argv[]){

3 printf("Hello, world\n");

4 }

Compile and run it

1 $ gcc -Wall hello.c -o hello

2 $./hello

For the record: same in Java
hello.c

class HelloWorld {

public static void main(String[]arg){

System.out.println("Hello, world");

}}

Compiling and running Java code

$ javac HelloWorld.java

$ java -cp . HelloWorld

Explanations

I #include can be seen as the equivalent of import directives

I main is the entry point of every program (same in C and Java)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 27/127

C Compilation Process

Compiling a C program involves 3 separate tools

1. Pre-processor: Rewrites the code according to the defined macros
I Lines begining with ”#” are macros
I #define name value: declare a sort of automatic search/replace
I #define name(params) value: search/replace but with arguments
I #include "file": inline the content of the given file
I #ifdef name/#else/#endif: mask parts of the file if name is defined

2. Compiler: Translates the code into assembly

3. Linker: Take elements in assembly and resolve library dependencies
I If your code uses function cos(), you need the math lib
I The linker solves a puzzle to ensure that every used function get defined

This process is rather transparent to the user

I You edit your code (in emacs/vi/eclipse)

I You launch gcc, which lauches mandatory tools automatically

I You mainly need to know that when you get error messages

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 28/127

What if you get error messages when compiling

Some examples
I foo.c:71:2: error: invalid preprocessing directive #deifne

The preprocessor is not happy: check file foo.c, line 71, column 2
I foo.c:72: error: expected ’)’ before ‘char’

Compiler’s not happy (syntax error)
I foo.c:74: error: redefinition of ’myFunc’

foo.c:72: error: previous definition of ’myFunc’ was here

Defining the same function twice makes the linker unhappy
I /usr/lib/crt1.o: In function ‘ start’:

(.text+0x18): undefined reference to ‘main’

collect2: ld returned 1 exit status

A function is used, but never defined
(see RS lecture next year to understand the detail of the message)

I Segmentation fault ./myProg

Your program messed up the memory (valgrind knows where)

How to react when you get error messages (and you will)
I Don’t panic, even if the message seem cryptic (they often are)
I Read the message: they are sometimes even understandable
I Don’t even read the second message: the parser often gets lost after first error

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 29/127

Conclusion on C (for now)

C is the modern assembly language
I It’s quite prehistorical

I Compilation process not trivial (even with only one file)
I Cryptic error messages
I No fancy stuff in standard library

I Programs can be really fast
I If you do them right; easy to code slow C programs too

I You have the full power of doing everything
I No matter what you want to code, it’s possible in C
I A lot of code were already developed in C (check koders.com)
I C poses no rule to limit your imagination. . .
I . . . but there is no barrier to prevent you doing stupid things

You need to master C to understand your machine

I The operating system is in C, just like the virtual machines

I And then, you’re free to use it or not
Depending on whether you’re seeking for fast programs or fast coding

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 30/127

koders.com

Chapter 1

C and Unix

Introduction
C? UNIX? What is all this about?
Why do we need to study C?
Why do we need to study C and UNIX together?

C as Second Language
C vs. Java
How to survive in C?
Your first C program

First steps in Unix
Désignation des fichiers
Protection des fichiers
Using the terminal

First steps in Unix

This OS gives a central role to files
I Contains data and executable programs (quite usual)

I Communication with user : config files, stdin, stdout
I Communication between processes: sockets, pipes, etc.

I Interface to the kernel: /proc
I Interface to the hardware: peripheral in /dev

The Terminal is an interface of choice
I Graphical interfaces exist too, but I still prefer the terminal
I Lots of tricks make you more efficient with the terminal

(more button on my keyboard than on my mouse)
I If you can’t do it in one step, type a one-line script directly

Read The Fine Manual (RTFM)

I The command man gives you access to a large corpus of knowledge
I man prog or man function ; documentation of that program or function

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 32/127

First steps in Unix

This OS gives a central role to files
I Contains data and executable programs (quite usual)

I Communication with user : config files, stdin, stdout
I Communication between processes: sockets, pipes, etc.

I Interface to the kernel: /proc
I Interface to the hardware: peripheral in /dev

The Terminal is an interface of choice
I Graphical interfaces exist too, but I still prefer the terminal
I Lots of tricks make you more efficient with the terminal

(more button on my keyboard than on my mouse)
I If you can’t do it in one step, type a one-line script directly

Read The Fine Manual (RTFM)

I The command man gives you access to a large corpus of knowledge
I man prog or man function ; documentation of that program or function

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 32/127

First steps in Unix

This OS gives a central role to files
I Contains data and executable programs (quite usual)

I Communication with user : config files, stdin, stdout
I Communication between processes: sockets, pipes, etc.

I Interface to the kernel: /proc
I Interface to the hardware: peripheral in /dev

The Terminal is an interface of choice
I Graphical interfaces exist too, but I still prefer the terminal
I Lots of tricks make you more efficient with the terminal

(more button on my keyboard than on my mouse)
I If you can’t do it in one step, type a one-line script directly

Read The Fine Manual (RTFM)

I The command man gives you access to a large corpus of knowledge
I man prog or man function ; documentation of that program or function

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 32/127

Désignation des fichiers

Désignation symbolique (nommage): Organisation hiérarchique

I Noeuds intermédiaires: répertoires (directory – ce sont aussi des fichiers)

I Noeuds terminaux: fichiers simples

I Nom absolu d’un fichier: le chemin d’accès depuis la racine

Exemples de chemins absolus :

/

/bin

/usr/local/bin/prog

/home/bob/conf/main.tex

/home/jim/code/main.c

prog1

prog3prog2

local bin

usr bin etc home

jim

code conf

main.texmain.c

/

bob

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 33/127

Raccourcis pour simplifier la désignation

Noms relatifs au répertoire courant

I Depuis /home/bob, conf/main.tex = /home/bob/conf/main.tex

Abréviations
I Répertoire père: depuis /home/bob, ../jim/code = /home/jim/code

I Répertoire courant: depuis /bin, ./prog1 = /bin/prog1

I Depuis n’importe où, ∼bob/ = /home/bob/ et ∼/ = /home/<moi>/

Liens symboliques
Depuis /home/jim

I Création du lien: ln -s cible nom du lien
Exemple: ln -s /bin/prog1 monprog

I /home/jim/prog1 désigne /bin/prog1

I Si la cible est supprimée, le lien devient invalide

bob

monprogcode

jim

etcbin

prog1

home

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 34/127

Règles de recherche des exécutables

I Taper le chemin complet des exécutable (/usr/bin/ls) est lourd

I ⇒ on tape le nom sans le chemin et le shell cherche

I Variable environnement PATH: liste de répertoires à examiner successivement
/usr/local/bin:/usr/local/sbin:/sbin:/usr/sbin:/bin:/usr/bin:/usr/bin/X11

I Commande which indique quelle version est utilisée

Exercice : Comment exécuter un script nommé gcc dans le répertoire courant?

I Solution 1:

I Solution 2:

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 35/127

/usr/local/bin:/usr/local/sbin:/sbin:/usr/sbin:/bin:/usr/bin:/usr/bin/X11

Utilisations courantes des fichiers
I Unix: fichiers = suite d’octets sans structure interprétée par utilisateur
I Windows: différencie fichiers textes (où \n est modifié) des fichiers binaires

Programmes exécutables

I Commandes du système ou programmes créés par un utilisateur

I Exemple: gcc -o test test.c ; ./test

Produit programme exécutable dans fichier test; exécute le programme test

I Question: pourquoi ./test ?

Fichiers de données
I Documents, images, programmes sources, etc.

I Convention:

le suffixe indique la nature du contenu

Exemples : .c (programme C), .o (binaire translatable, cf. plus loin), .h
(entête C), .gif (un format d’images), .pdf (Portable Document Format), etc.
Remarque: ne pas faire une confiance aveugle à l’extension (cf. man file)

Fichiers temporaires servant pour la communication

I Ne pas oublier de les supprimer après usage

I On peut aussi utiliser des tubes (cf. RS l’an prochain)
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 36/127

Utilisations courantes des fichiers
I Unix: fichiers = suite d’octets sans structure interprétée par utilisateur
I Windows: différencie fichiers textes (où \n est modifié) des fichiers binaires

Programmes exécutables

I Commandes du système ou programmes créés par un utilisateur

I Exemple: gcc -o test test.c ; ./test

Produit programme exécutable dans fichier test; exécute le programme test

I Question: pourquoi ./test ?

Fichiers de données
I Documents, images, programmes sources, etc.

I Convention:

le suffixe indique la nature du contenu

Exemples : .c (programme C), .o (binaire translatable, cf. plus loin), .h
(entête C), .gif (un format d’images), .pdf (Portable Document Format), etc.
Remarque: ne pas faire une confiance aveugle à l’extension (cf. man file)

Fichiers temporaires servant pour la communication

I Ne pas oublier de les supprimer après usage

I On peut aussi utiliser des tubes (cf. RS l’an prochain)
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 36/127

Utilisations courantes des fichiers
I Unix: fichiers = suite d’octets sans structure interprétée par utilisateur
I Windows: différencie fichiers textes (où \n est modifié) des fichiers binaires

Programmes exécutables

I Commandes du système ou programmes créés par un utilisateur

I Exemple: gcc -o test test.c ; ./test

Produit programme exécutable dans fichier test; exécute le programme test

I Question: pourquoi ./test ?

Fichiers de données
I Documents, images, programmes sources, etc.

I Convention: le suffixe indique la nature du contenu

Exemples : .c (programme C), .o (binaire translatable, cf. plus loin), .h
(entête C), .gif (un format d’images), .pdf (Portable Document Format), etc.
Remarque: ne pas faire une confiance aveugle à l’extension (cf. man file)

Fichiers temporaires servant pour la communication

I Ne pas oublier de les supprimer après usage

I On peut aussi utiliser des tubes (cf. RS l’an prochain)
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 36/127

Protection des fichiers: généralités

Définition (générale) de la sécurité

I confidentialité :

informations accessibles aux seuls usagers autorisés

I intégrité :

pas de modifications indésirées

I contrôle d’accès :

qui a le droit de faire quoi

I authentification :

garantie qu’un usager est bien celui qu’il prétend être

Comment assurer la sécurité
I Définition d’un ensemble de règles (politiques de sécurité) spécifiant la

sécurité d’une organisation ou d’une installation informatique

I Mise en place mécanismes de protection pour faire respecter ces règles

Règles d’éthique

I Protéger ses informations confidentielles (comme les projets et TP notés!)

I Ne pas tenter de contourner les mécanismes de protection (c’est la loi)

I Règles de bon usage avant tout:
La possibilité technique de lire un fichier ne donne pas le droit de le faire

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 37/127

Protection des fichiers: généralités

Définition (générale) de la sécurité

I confidentialité : informations accessibles aux seuls usagers autorisés
I intégrité :

pas de modifications indésirées

I contrôle d’accès :

qui a le droit de faire quoi

I authentification :

garantie qu’un usager est bien celui qu’il prétend être

Comment assurer la sécurité
I Définition d’un ensemble de règles (politiques de sécurité) spécifiant la

sécurité d’une organisation ou d’une installation informatique

I Mise en place mécanismes de protection pour faire respecter ces règles

Règles d’éthique

I Protéger ses informations confidentielles (comme les projets et TP notés!)

I Ne pas tenter de contourner les mécanismes de protection (c’est la loi)

I Règles de bon usage avant tout:
La possibilité technique de lire un fichier ne donne pas le droit de le faire

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 37/127

Protection des fichiers: généralités

Définition (générale) de la sécurité

I confidentialité : informations accessibles aux seuls usagers autorisés
I intégrité : pas de modifications indésirées
I contrôle d’accès :

qui a le droit de faire quoi

I authentification :

garantie qu’un usager est bien celui qu’il prétend être

Comment assurer la sécurité
I Définition d’un ensemble de règles (politiques de sécurité) spécifiant la

sécurité d’une organisation ou d’une installation informatique

I Mise en place mécanismes de protection pour faire respecter ces règles

Règles d’éthique

I Protéger ses informations confidentielles (comme les projets et TP notés!)

I Ne pas tenter de contourner les mécanismes de protection (c’est la loi)

I Règles de bon usage avant tout:
La possibilité technique de lire un fichier ne donne pas le droit de le faire

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 37/127

Protection des fichiers: généralités

Définition (générale) de la sécurité

I confidentialité : informations accessibles aux seuls usagers autorisés
I intégrité : pas de modifications indésirées
I contrôle d’accès : qui a le droit de faire quoi
I authentification :

garantie qu’un usager est bien celui qu’il prétend être

Comment assurer la sécurité
I Définition d’un ensemble de règles (politiques de sécurité) spécifiant la

sécurité d’une organisation ou d’une installation informatique

I Mise en place mécanismes de protection pour faire respecter ces règles

Règles d’éthique

I Protéger ses informations confidentielles (comme les projets et TP notés!)

I Ne pas tenter de contourner les mécanismes de protection (c’est la loi)

I Règles de bon usage avant tout:
La possibilité technique de lire un fichier ne donne pas le droit de le faire

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 37/127

Protection des fichiers: généralités

Définition (générale) de la sécurité

I confidentialité : informations accessibles aux seuls usagers autorisés
I intégrité : pas de modifications indésirées
I contrôle d’accès : qui a le droit de faire quoi
I authentification : garantie qu’un usager est bien celui qu’il prétend être

Comment assurer la sécurité
I Définition d’un ensemble de règles (politiques de sécurité) spécifiant la

sécurité d’une organisation ou d’une installation informatique

I Mise en place mécanismes de protection pour faire respecter ces règles

Règles d’éthique

I Protéger ses informations confidentielles (comme les projets et TP notés!)

I Ne pas tenter de contourner les mécanismes de protection (c’est la loi)

I Règles de bon usage avant tout:
La possibilité technique de lire un fichier ne donne pas le droit de le faire

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 37/127

Protection des fichiers sous Unix

Sécurité des fichiers dans Unix
I Trois types d’opérations sur les fichiers : lire (r), écrire (w), exécuter (x)

I Trois classes d’utilisateurs vis à vis d’un fichier:
propriétaire du fichier ; membres de son groupe ; les autres

rwx rwx rwx
propriétaire groupe autres

Granularité plus fine avec les Access Control List (peu répandus, pas étudiés ici)

I Pour les répertoires, r = ls, w = créer des éléments et x = cd.

I ls -l pour consulter les droits; chmod pour les modifier (cf. man chmod)

Mécanisme de délégation

I Problème : programme dont l’exécution nécessite des droits que n’ont pas les
usagers potentiels (exemple: gestionnaire d’impression, d’affichage)

I Solution (setuid ou setgid): ce programme s’exécute toujours sous l’identité
du propriétaire du fichier; identité utilisateur momentanément modifiée
identité réelle (celle de départ) vs identité effective (celle après setuid)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 38/127

Crash course on using the terminal

Main idea
I Your shell is somewhere in the filesystem tree (current directory)

I You issue commands to interact with the system

Commands Basic Syntax

I Every command follows this syntax: <command name> <arguments>

I Arguments are space separated

I Flags are specific arguments begining usually with - (minus)

Minimal set of commands to remember
Action Command Memoing
Examine content of current dir ls listing
Know name of current dir pwd Print Working Directory
Change current dir cd change directory
Copy a file into another cp copy
Create a new dir mkdir make directory
Destroy a file, a dir rm, rmdir remove
Usual shorthand for files and dirs . .. / ˜ * ˜user

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 39/127

Using the terminal efficiently

Common Tricks
I Typing everything is really to slow. You need to be lazy here.
I Up / Down : see commands typed previously. Edit it, and go!

I Ctrl-A / Ctrl-E : jump to begin/end of line

I Tab : auto-complete what you are currently typing

Medium Tricks
I Ctrl-R : begin to search a text pattern in the command history

I !command : directly relaunch the last command involving that command

I !! : directly relaunch the last command

Advanced Tricks
I Master your terminal (know the base commands)
I Assemble commands in pipe to get more advanced ones
I Write one-line scripts directly in the terminal
I Configure your environment: Declare aliases, write scripts, etc.

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 40/127

Conclusion on Unix (for now)

Unix is one of the most influent operating system

I Around since 40 years, still there for a long time

I Most of the OS research inovation go in Unix first (open source power)

I Other OSes become Unixes (OS X) or get portability layers (z/OS, windows)

You can use that powerful tool too

I Not as much game as on your Wii, but fully usable and free

I The interface may be different of what you’re used to

I May be less intuitive at first glance, but there’s a strong underlying philosophy

I Constitute a playground of choice for CS students

Mastering this system is the goal of that course

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap I : C and Unix 41/127

Chapter 2

C as Second Language

Syntax of the C language
C Quick Reference
Type Constructors
Lexical Structure

Interactions with the Environment
Input/Output: Terminal and Files
Command-line Arguments
Interacting with Processes

Associated Tools
Preprocessor

We said that C and Java are quite similar

Similarities between C and Java
I Operators

I Arithmetic (+,-,*,/,% ; ++,- -,*=,. . .); Bitwise (&,|,ˆ,!,<<,>>)
I Relational (<,>,<=,>=,==,!=); Logical &&, ||, !, (a?b:c)

I Keywords and Language Constructs
I if(){ } else { }
I while(){ }
I switch() { case 0: ... }

I for(i=0; i<100; i++){ }
I do { } while()

I break, continue, return

I Basic (primitive) types: void, int, short, long; float, double; char.
No boolean, use int instead (0=False; anything else=True)

I Function declarations: int fact(int a){return a==0 ? 1 : a*fact(a-1);}

Differences between C and Java
I No exception: usually rely on int error code instead (and usually a pain)

I No class/package/interface: code modularity different (not compiler-enforced)

I No garbage collector: alloc and free manually needed memory (incredible pain)

I Terse standard library: reimplement your datastructures (but tons of extra libs)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 43/127

Paradigm difference between C and Java

The syntax is not everything. Java and C are really different

Paradigm shift seen from the C side
I Object-Oriented Programming Paradigm

I Decide which classes you need
I Provide a full set of operations for each class
I Make commonality explicit by using inheritance

I Procedural Programming Paradigm
I Decide which procedures and data structures you want
I Use the best algorithms

Reality is a bit different

I Nothing forces you to any sort of organization in C. You’re free of the worst

Oh, I am a C programmer and I’m okay.
I muck with indices and structs all day.
And when it works, I shout hoo-ray.
Oh, I am a C programmer and I’m okay.

I (but you’re free of the best, too, even if “good style in C” is a relative notion)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 44/127

Paradigm difference between C and Java

The syntax is not everything. Java and C are really different

Paradigm shift seen from the C side
I Object-Oriented Programming Paradigm

I Decide which classes you need
I Provide a full set of operations for each class
I Make commonality explicit by using inheritance

I Procedural Programming Paradigm
I Decide which procedures and data structures you want
I Use the best algorithms

Reality is a bit different

I Nothing forces you to any sort of organization in C. You’re free of the worst

Oh, I am a C programmer and I’m okay.
I muck with indices and structs all day.
And when it works, I shout hoo-ray.
Oh, I am a C programmer and I’m okay.

I (but you’re free of the best, too, even if “good style in C” is a relative notion)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 44/127

C Quick Reference

We won’t get into details here. References are for later use, not for beginners

Complete list of keywords (in ANSI C)
I Storage specifiers: auto register static extern typedef

I Type specifiers: char double enum float int long short signed struct

union unsigned void (+sizeof, which is an operator on types)
I Type quantifiers: const volatile

I Controls: break case continue default do else for goto if return

switch while

Operators Precedence (and Associativity)
1. Functions calls, subscripting and selection: () [] -> . →
2. Not: ! ˜ Inc/Dec: ++ −− Unary - Cast (type) Indir./address * & sizeof ←
3. Math operators: * / % 4. Other math operators: + -(binary) →
5. Bitwise shifts: << >> 6. Relational operators: < <= > >= →
7. Equality: == != 8. Bitwise AND: & 9. Bw XOR: ˆ 10. Bw OR: | →

11. Logical AND: && 12. Logical OR: || →
13. Ternary Operator ?: (condition ? exprIfTrue : exprIfFalse) ←
14. Assignments with operator: = += -= *= /= %= &= ˆ= |= <<= >>= ←
15. Sequencing expressions: , (comma) →

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 45/127

C base types

C and the types

I The C language is (really) weakly typed (wrt CAML for example)

I C types look like Java ones at the first glance, but include some . . . surprises

What defines a type in computer languages?

I Value domain: what can be encoded in that type

I Operators: what can be done with values of that type

Existing types in the C language

I void: Domain: ∅ (none); Operators: none
Placeholder for type where there is no value (type of return when no return)

I int: Domain: integers; Operators: All numerical, logical and bitwise ones
Variants: short/long and also signed/unsigned

I float and double: floating point numbers (IEEE754 compliant, no variant)

I char: Domain: chars such as ’a’, ’1’, ’$’ and some less common ones
Operators: numerical, logical and bitwise ones. Variants: signed/unsigned
Yep, chars are “small numbers” in C

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 46/127

C base types

C and the types

I The C language is (really) weakly typed (wrt CAML for example)

I C types look like Java ones at the first glance, but include some . . . surprises

What defines a type in computer languages?

I Value domain: what can be encoded in that type

I Operators: what can be done with values of that type

Existing types in the C language

I void: Domain: ∅ (none); Operators: none
Placeholder for type where there is no value (type of return when no return)

I int: Domain: integers; Operators: All numerical, logical and bitwise ones
Variants: short/long and also signed/unsigned

I float and double: floating point numbers (IEEE754 compliant, no variant)

I char: Domain: chars such as ’a’, ’1’, ’$’ and some less common ones
Operators: numerical, logical and bitwise ones. Variants: signed/unsigned
Yep, chars are “small numbers” in C
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 46/127

Beware, type sizes are not known in C
Type Java C
char 16 bits 8 bits
short 16 bits 16 bits

int 32 bits 16, 32 or 64 bits (“most natural size for architecture”)
long 64 bits 32 or 64 bits
float 32 bits 32 bits

double 64 bits 64 bits
boolean 1 bit – No such thing in C, use int (or bit fields)

byte 8 bits – Doesn’t exist, use char
long long – 64 bits This type is not standard/unofficial

long double – 80, 96 or 128 bits this one either

Type domains also naturally vary
Type size Range when signed Range when unsigned

8 bits [−27; 27[= [−128; 128[[0; 28[= [0; 256]
16 bits [−215; 215[= [−32 768; 32 768[[0; 216[= [0; 65 535]
32 bits [−231; 231[= [−2 147 483 647; 2 147 483 648] [0; 232[= [0; 4 294 967 295]
64 bits [−9 223 372 036 854 775 807; 9 223 372 036 854 775 808] [0; 18 446 744 073 709 551 615]

Use sizeof() when you need to know a type size on current machine
(and the limits.h file)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 47/127

Chapter 2

C as Second Language

Syntax of the C language
C Quick Reference
Type Constructors
Lexical Structure

Interactions with the Environment
Input/Output: Terminal and Files
Command-line Arguments
Interacting with Processes

Associated Tools
Preprocessor

Type Constructors

How to keep together related data grouped in C?

I Arrays (similar to Java) ordered list of elements
Ex: Values of the fibonacci suite; Temperature over the time; Data to sort . . .

I Structures: like java objects without methods, or SQL reccords
Ex: A car; A student; A group of students; A school . . .

I Enumerations group of related values (exists also in Java, but rarely used)
Ex: Colors; Cards in a deck; Direction (north/south/east/west). . .

I Unions: Like structures, but stores everything at the same memory location
Advanced stuff, useful for strange memory tricks (data conversion)

I Bit fields: arrays of bits. Advanced stuff allowing direct access to memory
Useful to encode several booleans in a compact way

Let’s detail the basic ones
I Aka, Arrays, structures and enumerations.

I Unions and bit fields are kinda advanced C-fu

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 49/127

Arrays in C

Similarity to Java

I Defining: int T[5] defines 5 integers, noted T[0], T[1], T[2], T[3] and T[4]

I Initialization: int T[5] = {10,20,30,40,50}; does what you expect

For the record, in Java, you’d write int[] T = new int[] {10,20,30,40,50};
I No global operators: Ta==Tb and Ta+Tb . . . does not do what you think

C arrays specificities from Java ones

I You must write int T[5] because int[5] T is forbidden
To understand a C (or Java) complex type, you must read from right to left

I You cannot retrieve the size of an array: T.length() does not exist

You must store the array size alongside to the array, in an integer

I Dynamically sized arrays are not allowed in C [without dynamic memory]
I Array sizes must be known at compilation time
I int T[] = new int[a]; is just impossible (in ANSI C)

I There is no bound checking on arrays in C (and C memory is a big magma)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 50/127

Strings in C

Unfortunately, there is no standard type in C to describe strings. . .

I Instead, the C idiomatic is to use arrays of chars

I In turn, arrays are unpleasant because they do not contain their own length

I So by convention every C string should be zero-terminated
i.e. the last value in the array is the special char ’\0’ (different from ’0’)

I Beware, to store a string of 5 letters, you need 6 positions:

char str[6]="hello"; h e l l o \0

I Useful functions for such strings: strlen(), strcpy(), strcmp(), . . .

I But you are free to not follow that convention if you prefer to do otherwise
(you just have to do it all by yourself then)

I If the size is given elsewhere, you can use char *str; for char str[5];

(much more to come on that little * sign)

I Don’t mix the char ’a’ with the string "a"

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 51/127

Structures in C
This is a fundamental construction in C

I Group differing aspects of a given concept, just like Java objects
Vocabulary: We speak of structure members and object fields

I But they (usually) don’t contain the associated methods/functions

Definition example

struct point {
double x;
double y;
int rank;

}; // beware of the trailing ;

Usage example

struct point p1; // the type name is ‘‘struct point’’
p1.x = 4.2;
p1.y = 3.14;
p1.rank = 1;
struct point p2 = { 4.2, 3.14, 2 };

Structures as parameter and return values

struct point translate(struct point p,
double dx, double dy) {

struct point res = p;
res.x += dx;
res.y += dy;
return res;

}

Declare and use at once

struct point {
int x;

} p1,p2; // variables of that type

struct { // Anonymous structure
int x;

} p1,p2; // variables of that type

I Parameter and return values are copied (no border effect; inherent inefficiency)
I Remarks: Members can be structs too; No global operators (such as ==)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 52/127

Enumerations in C

Basics
I They are used to group values of the same lexical scope

I A variable of type color can take a value within {blue, red, white, yellow}

Definition example

enum color {
blue, red, white, yellow

}; // beware of the trailing ;

Usage example

enum color bikesheld; // the type name is ‘‘enum color’’
bikesheld = white;

Enumerations can be used as parameter and return values

enum color make_white(enum color c) {
return white; // Yes, this function is useless as is...

}

I Main advantage: there is a compilation error if you forget a value in a switch
(instead of silently ignoring the whole block when the case occurs, which is a pain)

I Every arithmetic and logical operators can be used (white+1;yellow)

Java enums
I They exist in Java, too. Much more powerful and complicated. Rarely used.

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 53/127

Memory layout of C type constructors

Impossible to master C without understanding the memory layout

I (This is because memory is a kind of unsorted magma in C)

I First absolute rule: successive elements are stored in order in memory

struct point {
double x;
double y;
int rank; };

rankx y

int T[6]; T[2]T[0] T[1] T[3] T[5]T[4]

I But the compiler is free to add padding space to respect alignment constraints

struct point {
double x;
int rank;
double y;

};

rank yx ∅

I Compiler-dependent/processor-dependent, so you can hardly rely on it. . .

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 54/127

Type aliasing in C

Motivation
I Type names quickly become quite long: enum color,
I Variable square being an array of four points: struct point square[4]

⇒ Keyword typedef used to declare type aliases

Usage
I Reading a typedef: “the last word is an alias for everything else on the line”

Basic example

struct point {
double x;
double y;

};
typedef struct point point t;
...
point_t p;
p.x = 4.2;
p.y = 3.14;

All-in-one example

typedef struct point {
double x, y;

} point t;

Complex example

typedef point_t square t[4];
square_t s; s[0].x=3.14;

I typedefs are mandatory to organize your code. . .
I . . . but can easily be misused to make your code messy and unreadable

(just like about every C idiomatic constructs)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 55/127

Chapter 2

C as Second Language

Syntax of the C language
C Quick Reference
Type Constructors
Lexical Structure

Interactions with the Environment
Input/Output: Terminal and Files
Command-line Arguments
Interacting with Processes

Associated Tools
Preprocessor

Lexical Structure of a Typical Program

I Header inclusions: Load the prototypes of function that you want to use
I Lines begin with #include

I Loaded files are called headers
I #include <file> for system-wide headers

I #include "file" for project-wide headers

#include <stdlib.h>
#include <stdio.h>
#include "my_prototypes.h"

I Preprocessor directives; types defs; globals&constants; function prototypes
I typedefs as seen before

I const are just like final in Java

I Globals visible from the whole program

I Prototypes tell the compiler about functions

#define MAX 42
const int size = 5;
int ranking = 3;
int array[MAX];
void compute_ranking(int from);

I Function definitions, including the main() function
I There must be one unique main() function

I Program entry point: started first

I Should return EXIT SUCCESS or EXIT FAILURE

I Several prototypes exist, this one is classical

void main(int argc,char *argv[]){
/* My code here */
return EXIT_SUCCESS;

}

I The program can spread over several files (more to come on this)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 57/127

Source Formatting Best Practices

Identifier naming schema

I There is a religion war between this naming schema and thisNamingSchema

I I personally use the first one in C, and the second one in Java

I Pick your own, and Stick to it!

Indenting

I There is another religion war between these two styles (and others)

if (cond) {
/* body */

}

if (cond)
{

/* body */
}

I I personally use the first one (more compact), but YMMV:

I As long as you DO indent your code consistently, that’s fine with me

Spacing (no real flame war here, boring)

I No spaces around these: -> . [] ! ˜ ++ - - & unary * and -

I One space around these: = += ?: + < && and binary operators

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 58/127

Chapter 2

C as Second Language

Syntax of the C language
C Quick Reference
Type Constructors
Lexical Structure

Interactions with the Environment
Input/Output: Terminal and Files
Command-line Arguments
Interacting with Processes

Associated Tools
Preprocessor

Terminal I/O

Interactions with the external world in C and Java
I Java: easy to build a GUI and painful to interact through the console

I C: the contrary (GUI require external libs such as Gnome, KDE, ncurse)

Standard Communication Channels
I Standard input (stdin): keyboard, unless it got redirected

I Standard output (stdout): screen, unless it got redirected

I Standard error (stderr): screen, unless it got redirected

I Example of redirection: prog < in file > out file 2>err file

Single character I/O

I int getchar(): returns the next character from input
(or EOF in case of End Of File, this constant is defined in stdio.h)

I int putchar(int c): writes c to output

I Yes these function consider chars as ints. Sorry.

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 60/127

Multiple Characters Terminal I/O

Motivation
I Single char I/O works, but that’s a real pain. We want the equivalent of

System.out.println("hello "+name+". How are you today?");

I No tostring() magic functions nor magic + string concatenation in C

Interacting with the terminal in C

I Actually there is two major interfaces for that in C

I Low-level API (write() / read()): better performance when used correctly

I High-level API (printf() / scanf()): easier to use; way to go this year

I You need to load stdio.h to use all these functions

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 61/127

Writing to the stdout with the printf function
Naive usage

I Write the fixed string ”hello” to the terminal: printf("hello")

I Write that string and return to the line beginning: printf("hello\n")

Basic usage
I To output variables, put place holders in the format string:

int x=3; printf("value: %d\n",x)
I Use several place holders to display several variables:

int x=3; int y=2; printf("x: %d; y: %d\n",x,y)
I The kind of place holder gives the type of variable to display

%d integer (decimal)
%f floating point number
%c char
%s string (nul-terminated char array)

%% the % char

I If you use the wrong conversion specifier, strange things will happen
including a brutal ending of your program – SEGFAULT

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 62/127

Writing to the stdout with the printf function
Naive usage

I Write the fixed string ”hello” to the terminal: printf("hello")

I Write that string and return to the line beginning: printf("hello\n")

Basic usage
I To output variables, put place holders in the format string:

int x=3; printf("value: %d\n",x)
I Use several place holders to display several variables:

int x=3; int y=2; printf("x: %d; y: %d\n",x,y)
I The kind of place holder gives the type of variable to display

%d integer (decimal)
%f floating point number
%c char
%s string (nul-terminated char array)

%% the % char

I If you use the wrong conversion specifier, strange things will happen
including a brutal ending of your program – SEGFAULT

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 62/127

Advanced printf usage

Other conversion specifiers

%u unsigned integer
%ld long integer
%lu long unsigned integer
%o integer to display in octal
%x integer to display in hexadecimal
%e floating point number to display in scientific notation

Formating directive modifiers

I You can specify that you want to see at least 3 digits: printf("%3d",x);

I Or that you want exactly 2 digits after the dot: printf("%.2d",x);

I Or both at the same time: printf("%3.2f",x);

I Or that the output must be 0-padded: printf("%03.2f",x); ; 003.14

I Or that you want to see at most 3 chars: printf("%.3s",str);

Many other options exist, full list in man 3 printf

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 63/127

Reading from stdin with the scanf function

Works quite similarly to printf, but. . .

I Read an integer: int x; scanf("%d", &x);

I Read a double: double d; scanf("%f", &d);

I Read a char: char c; scanf("%c", &c);

I Read a string: char str[120]; scanf("%c", str);

I Read two things: int x;char c; scanf("%d%c", &x, &c);

So. . .
I You need to add a little & to the variable. . .

I . . . unless when the variable is a string (we’ll explain later why)

I Format string can contain other chars than converters: they must be in input

I A space in format will match any amount of white chars (spaces, \n, tabs)

I Note that scanf returns the amount of chars it managed to read
Useful for error checking: what if that’s not an integer but something else?

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 64/127

File I/O

#include <stdio.h>

printf/scanf functions have nice friends for that
I Writing to stderr: fprintf(stderr,"warning\n")

I fprintf works just like printf, taking a file handler as first argument
I Likewise fscanf is just like scanf, with a handler as first argument

I Declaring a file handler (a variable describing a file): FILE* handler;

I Opening a file for reading handler = fopen("myfile","r");

I Opening a file for writing handler = fopen("myfile","w");

I Opening a file in read/write mode handler = fopen("myfile","r+");

I Checking that the opening went well: if (handler==NULL) {problem}

I Checking whether we reached the end of file if (feof(handler)) {done}

I Closing a file: fclose(handler);

In UNIX, everything is a file, and it makes things easier
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 65/127

Chapter 2

C as Second Language

Syntax of the C language
C Quick Reference
Type Constructors
Lexical Structure

Interactions with the Environment
Input/Output: Terminal and Files
Command-line Arguments
Interacting with Processes

Associated Tools
Preprocessor

Command line arguments

Motivation
I Classical tools such as ls or mv get arguments from the command line

I How can we do the same? From the main() arguments of course

int main(int argc, char *argv[]) {...}
I argc: amount of parameter received; argv: array of strings received

I (note: these names are conventions, doing really otherwise hinders readability)

Memory layout for ls -lt /

�
�
�
�

"-lt"

"ls"

"/"

argv

3argc
argv[0]

argv[1]

argv[2]

argv[3]
NULL

Displaying the arguments
int main(int argc, char *argv[]) {

int i;

for (i=1; i<argc; i++) {
printf("Argument #%d: %s\n",

i, argv[i]);

}
return EXIT SUCCESS;

}

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 67/127

Command line arguments

Motivation
I Classical tools such as ls or mv get arguments from the command line

I How can we do the same? From the main() arguments of course

int main(int argc, char *argv[]) {...}
I argc: amount of parameter received; argv: array of strings received

I (note: these names are conventions, doing really otherwise hinders readability)

Memory layout for ls -lt /

�
�
�
�

"-lt"

"ls"

"/"

argv

3argc
argv[0]

argv[1]

argv[2]

argv[3]
NULL

Displaying the arguments
int main(int argc, char *argv[]) {

int i;

for (i=1; i<argc; i++) {
printf("Argument #%d: %s\n",

i, argv[i]);

}
return EXIT SUCCESS;

}

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 67/127

Command line arguments

Motivation
I Classical tools such as ls or mv get arguments from the command line

I How can we do the same? From the main() arguments of course

int main(int argc, char *argv[]) {...}
I argc: amount of parameter received; argv: array of strings received

I (note: these names are conventions, doing really otherwise hinders readability)

Memory layout for ls -lt /

�
�
�
�

"-lt"

"ls"

"/"

argv

3argc
argv[0]

argv[1]

argv[2]

argv[3]
NULL

Displaying the arguments
int main(int argc, char *argv[]) {

int i;

for (i=1; i<argc; i++) {
printf("Argument #%d: %s\n",

i, argv[i]);

}
return EXIT SUCCESS;

}

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 67/127

Chapter 2

C as Second Language

Syntax of the C language
C Quick Reference
Type Constructors
Lexical Structure

Interactions with the Environment
Input/Output: Terminal and Files
Command-line Arguments
Interacting with Processes

Associated Tools
Preprocessor

Interacting with Processes

First of all, what is a process?

I That’s a box encapsulating the execution of a task

I The operating system uses these boxes to let several tasks coexist in memory

I Processes are to programs what objects are to classes: living instances
You can use the same program than me, but you cannot use my processes

Basic shell interaction
I Start a process, simply type the name of the program with arguments

With &, the process runs in background. Ex: emacs &

Else, Ctrl-Z suspends process; then bg ; background; fg ; foreground

I List all existing processes ps -ef all mine ps -aux bob’s ps -u bob

I Kill a process knowing its PID: kill pid

I Kill a process knowing its name: killall name

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 69/127

Interacting with Processes

First of all, what is a process?

I That’s a box encapsulating the execution of a task

I The operating system uses these boxes to let several tasks coexist in memory

I Processes are to programs what objects are to classes: living instances
You can use the same program than me, but you cannot use my processes

Basic shell interaction
I Start a process, simply type the name of the program with arguments

With &, the process runs in background. Ex: emacs &

Else, Ctrl-Z suspends process; then bg ; background; fg ; foreground

I List all existing processes ps -ef all mine ps -aux bob’s ps -u bob

I Kill a process knowing its PID: kill pid

I Kill a process knowing its name: killall name

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 69/127

Interacting with Processes

First of all, what is a process?

I That’s a box encapsulating the execution of a task

I The operating system uses these boxes to let several tasks coexist in memory

I Processes are to programs what objects are to classes: living instances
You can use the same program than me, but you cannot use my processes

Basic shell interaction
I Start a process, simply type the name of the program with arguments

With &, the process runs in background. Ex: emacs &

Else, Ctrl-Z suspends process; then bg ; background; fg ; foreground

I List all existing processes ps -ef all mine ps -aux bob’s ps -u bob

I Kill a process knowing its PID: kill pid

I Kill a process knowing its name: killall name

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 69/127

Interacting with Processes from C

Starting an external process

I This is as easy as system("mkdir /tmp/directory")

I Trick 1: the return value is a bit counter-intuitive (0 –false– if ok)

I Trick 2: stdin/stdout of started process get to stdin/stdout of father
This limits the possible interaction between both processes

Starting and interacting with external processes

I Use FILE* popen(char *command, char *type) for that

I If type is ”r”, read from process. If ”w”, write to it (cannot do both this way)

I Use pclose(FILE*handle) instead of fclose() to close such a descriptor

I After the RS course, you’ll find implementing popen boring because simple

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 70/127

Interacting with Processes from C

Starting an external process

I This is as easy as system("mkdir /tmp/directory")

I Trick 1: the return value is a bit counter-intuitive (0 –false– if ok)

I Trick 2: stdin/stdout of started process get to stdin/stdout of father
This limits the possible interaction between both processes

Starting and interacting with external processes

I Use FILE* popen(char *command, char *type) for that

I If type is ”r”, read from process. If ”w”, write to it (cannot do both this way)

I Use pclose(FILE*handle) instead of fclose() to close such a descriptor

I After the RS course, you’ll find implementing popen boring because simple

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 70/127

Chapter 2

C as Second Language

Syntax of the C language
C Quick Reference
Type Constructors
Lexical Structure

Interactions with the Environment
Input/Output: Terminal and Files
Command-line Arguments
Interacting with Processes

Associated Tools
Preprocessor

The C preprocessor

Motivation
I C designed to work at (very) low level on a variety of machines

Sometimes, the only way to portability for a given function is:
Have several versions (windows, linux, mac); pick the right one at compilation

I C is a very old language ; we sometimes want to extend it a bit

The C preprocessor: in direct line with Paleolithic

I I’m not sure you’ll ever have to use such a rudimentary tool

I It’s as dumb as possible, but it perfectly fulfills its tasks

I It’s even sometimes used outside of the C ecosystem

I Beware, that’s the perfect tool to make your code unreadable

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 72/127

Preprocessor: Macros without Arguments

#define MACRO NAME value
I This requests a find/replace

Ex: #define MAX 12 ; change every “MAX” into 12

I Numerical constants must be defined that way (or const variables, or enums)

I Always write macro names in all upper case (to make clear what they are)

I Preprocessor lines expect no final semi-column (“;”)

I Always put too much parenthesis. Think of the result of:
#define TWELVE 10+2

int x = TWELVE * 2; //; x equals 10+2*2 = 14, not 12*2=24

// #define TWELVE (10+2) would fix it

I Preprocessor directive must be on one line only ; escape return carriages

#define MY MACRO this is \
a multi-line \
macro definition

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 73/127

More on Preprocessor Macros

Predefined macros
I STDC : 1 if the compiler conforms to ANSI C

I FILE : current file; LINE : current line in that file

; printf("%s:%d: was here\n", FILE , LINE);

#define MACRO NAME(parameters) value
I Programmable find/replace

Ex: #define MAX(a,b) ((a)>(b)?(a):(b)) (yep, there is no max() in C)

#undef MACRO
I Forget previous definition of this macro

#include <header file>
I As previously said, line replaced by whole content of file

I Header files are source file intended to be loaded this way

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 74/127

Conditional compilation with the preprocessor

Conditional on macro definitions
#ifdef macro_name

/* Code to use if macro defined */
#else

/* Code to use otherwise */
#endif

#ifndef macro_name
/* Code if macro not defined */

#else
/* Code if defined */

#endif

Conditional on expressions

#if constant_expression1
/* some C code */

#elif constant_expression2
/* some C code */

#else
/* some C code */

#endif

#if 0
code to kill

#endif

Protect against multiple inclusions

/* mainly useful for header files */
#ifndef SOME_UNIQUE_NAME
#define SOME_UNIQUE_NAME

...
#endif

Redefine a macro
#ifdef MACRO
#undef MACRO
#endif
#define MACRO blabla

#error "biiiirk"
I Raises a compilation error with given message (yep, that’s sometimes useful)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 75/127

(this ends the second lecture)

Chapter 2

C as Second Language

Syntax of the C language
C Quick Reference
Type Constructors
Lexical Structure

Interactions with the Environment
Input/Output: Terminal and Files
Command-line Arguments
Interacting with Processes

Associated Tools
Preprocessor

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap II : C as Second Language 76/127

Chapter 3

Memory Management in C

Static Memory
Variables in C
Processes Memory Layout
Addresses

Pointers
Basics
Pointers vs. Arrays
Casting Pointers

Dynamic Memory
Memory Blocs and Pointers

Memory Management in C

Introduction
I Main specificity of the C language: Memory Management

I You have full control over the memory in C

I That gives you the full power . . . to shoot you in the foot

Lecture agenda
I First explore the basic notions over memory

I Local and Global variables; Scope and Lifetime; Notion of Address and Pointers

I Then, (quick) look at the system side of memory management
I Memory Layout of a typical UNIX Process (more details in RS next year)

I Finally, go into the full details of memory allocation/deallocation
I Student’s hated malloc and associated madness

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 78/127

Variables in C

Kind of identifiers in C
I Little difference between variables and functions: they are all identifiers

I Every C identifiers can be either global or local

I Main differences: scope (visibility) and lifetime

Local Identifiers
I They are declared within a function

I Side note: nested functions are forbidden in standard C
gcc allows nested functions as a language extension – I recommend not using them

I Scope: Usable from the block where they are declared

I Lifetime: Valid only until the execution leaves the block

Global identifiers
I They are declared outside of any function

I Scope: Usable from the whole project

I Lifetime: permanent

I (yes, there is no such thing in Java)
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 79/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?

l1 a

1 0

l3 b

3 0

l5 a: 0; b: 0

l6 a

1

5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a

1 0

l3 b

3 0

l5 a: 0; b: 0

l6 a

1

5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a

1 0

l3 b

3 0

l5 a: 0; b: 0

l6 a

1

5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a

1

0

l3 b

3 0

l5 a: 0; b: 0

l6 a

1

5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a

1

0

l3 b

3

0

l5 a: 0; b: 0

l6 a

1

5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a

1

0

l3 b

3

0

l5 a: 0; b: 0

l6 a

1

5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a

1

0

l3 b

3

0

l5 a: 0; b: 0

l6 a

1

5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?

I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

First Weird Code with Variables
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Remarks
I Yes, we can use anonymous blocks

I We can declare variables in there

I We can override variables this way

I All this is possible in Java too!

What does this code do?
l1 a1 0

l3 b3 0

l5 a: 0; b: 0

l6 a1 5

l8 a8 ??

l9 a: ??; b: 0

l11 a1 10

l13 b13 10

l14 a: 10; b: 10

l15 b13 15

l17 b17 0

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

Ok, but how to understand it?
I Think of a stack containing locals

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 80/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a

b

l5

a 5
b

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a

b

l5

a 5
b

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a

b

l5

a 5
b

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b

l5

a 5
b

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0

b

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0
b 10

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0
b 10

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0
b 10

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0
b 10

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0
b 10

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0
b 10

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Variables are Stored on a Stack
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printf("a: %d, b: %d\n",a,b);
6: a += 5;

7: {
8: int a;

9: printf("a: %d, b: %d\n",a,b);
10: }
11: a += 5;

12: {
13: int b=a;

14: printf("a: %d, b: %d\n",a,b);
15: b += 5;

16: {
17: int b=0;

18: printf("a: %d, b: %d\n", a,b);

19: }
20: printf("a: %d, b: %d\n", a,b);

21: }
22: printf("a: %d, b: %d\n",a,b);
23: return 0;

24:}

Explaining the outputs
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

The stack over time
I Higher variables mask deeper ones

a 0
b 0

l5

a 5
b 0

a ?

l9

a 10
b 0
b 10

l14

a 10
b 0
b 15

b 0

l18

a 10
b 0
b 15

l20

a 10
b 0

l22

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 81/127

Function Parameters

Parameters are stacked too
I One stack frame per function (containing local vars and parameters)

I Stack frame: created on function call, destructed when the function returns

I Parameters can be seen as local variables (can even be modified)

I Parameters are passed by value (ie, copied over)

int max(int a, int b) {
return a>b ? a : b;

}

int main() {
int x=12;

int y=42;

return max(x,y);

}

Stack

42y

12x

main

42a

12b

max

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 82/127

Function Parameters

Parameters are stacked too
I One stack frame per function (containing local vars and parameters)

I Stack frame: created on function call, destructed when the function returns

I Parameters can be seen as local variables (can even be modified)

I Parameters are passed by value (ie, copied over)

int max(int a, int b) {
return a>b ? a : b;

}

int main() {
int x=12;

int y=42;

return max(x,y);

}

Stack

42y

12x

main

42a

12b

max

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 82/127

Function Parameters

Parameters are stacked too
I One stack frame per function (containing local vars and parameters)

I Stack frame: created on function call, destructed when the function returns

I Parameters can be seen as local variables (can even be modified)

I Parameters are passed by value (ie, copied over)

int max(int a, int b) {
return a>b ? a : b;

}

int main() {
int x=12;

int y=42;

return max(x,y);

}

Stack

42y

12x

main

42a

12b

max

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 82/127

Function Parameters

Parameters are stacked too
I One stack frame per function (containing local vars and parameters)

I Stack frame: created on function call, destructed when the function returns

I Parameters can be seen as local variables (can even be modified)

I Parameters are passed by value (ie, copied over)

int max(int a, int b) {
return a>b ? a : b;

}

int main() {
int x=12;

int y=42;

return max(x,y);

}

Stack

42y

12x

main

42a

12b

max

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 82/127

Function Parameters

Parameters are stacked too
I One stack frame per function (containing local vars and parameters)

I Stack frame: created on function call, destructed when the function returns

I Parameters can be seen as local variables (can even be modified)

I Parameters are passed by value (ie, copied over)

int max(int a, int b) {
return a>b ? a : b;

}

int main() {
int x=12;

int y=42;

return max(x,y);

}

Stack

42y

12x

main

42a

12b

max

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 82/127

Function Parameters Tricks

Parameters are passed by value

I We just said that but it is not as natural as it seems

I It forbids any side effects on parameters

I There is no way to avoid passing by value

I But pointers help: scanf manages to “modify its arguments”

void triple(int a) {
a=a*3;

return;

}

int main() {
int x=12;

triple(x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

a

triple

Output

$ myprog

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 83/127

Function Parameters Tricks

Parameters are passed by value

I We just said that but it is not as natural as it seems

I It forbids any side effects on parameters

I There is no way to avoid passing by value

I But pointers help: scanf manages to “modify its arguments”

void triple(int a) {
a=a*3;

return;

}

int main() {
int x=12;

triple(x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

a

triple

Output

$ myprog

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 83/127

Function Parameters Tricks

Parameters are passed by value

I We just said that but it is not as natural as it seems

I It forbids any side effects on parameters

I There is no way to avoid passing by value

I But pointers help: scanf manages to “modify its arguments”

void triple(int a) {
a=a*3;

return;

}

int main() {
int x=12;

triple(x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

12a

triple

Output

$ myprog

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 83/127

Function Parameters Tricks

Parameters are passed by value

I We just said that but it is not as natural as it seems

I It forbids any side effects on parameters

I There is no way to avoid passing by value

I But pointers help: scanf manages to “modify its arguments”

void triple(int a) {
a=a*3;

return;

}

int main() {
int x=12;

triple(x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

36a

triple

Output

$ myprog

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 83/127

Function Parameters Tricks

Parameters are passed by value

I We just said that but it is not as natural as it seems

I It forbids any side effects on parameters

I There is no way to avoid passing by value

I But pointers help: scanf manages to “modify its arguments”

void triple(int a) {
a=a*3;

return;

}

int main() {
int x=12;

triple(x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

a

triple

Output

$ myprog

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 83/127

Function Parameters Tricks

Parameters are passed by value

I We just said that but it is not as natural as it seems

I It forbids any side effects on parameters

I There is no way to avoid passing by value

I But pointers help: scanf manages to “modify its arguments”

void triple(int a) {
a=a*3;

return;

}

int main() {
int x=12;

triple(x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

a

triple

Output

$ myprog
x: 12

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 83/127

Function Parameters Tricks

Parameters are passed by value

I We just said that but it is not as natural as it seems

I It forbids any side effects on parameters

I There is no way to avoid passing by value

I But pointers help: scanf manages to “modify its arguments”

void triple(int a) {
a=a*3;

return;

}

int main() {
int x=12;

triple(x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

a

triple

Output

$ myprog
x: 12
$

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 83/127

Weird Code with Function Calls
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printab(a,b);

6: a += 5;

7: { int a;

8: printab(a,b);

9: }
10: a += 5;

11: { int b=a;

12: printab(a,b);

13: b += 5;

14: { int b=0;

15: printab(a,b);

16: }
17: printab(a,b);

18: }
19: printab(a,b);

20: return 0;

21:}
22:int printab(int b, int a) {
23: printf("a:%d, b:%d\n",a,b);
24:}

Code similar to previously

I Call printab() for display, not printf()

Old Output
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

New Output
l5 a:0; b:0

l9 a:0; b:??

l14 a:10; b:10

l18 a:0; b:10

l20 a:15; b:10

l22 a:0; b:10

This is all inverted!

The trick comes from. . .

I printab’s parameters, which are inverted

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 84/127

Weird Code with Function Calls
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printab(a,b);

6: a += 5;

7: { int a;

8: printab(a,b);

9: }
10: a += 5;

11: { int b=a;

12: printab(a,b);

13: b += 5;

14: { int b=0;

15: printab(a,b);

16: }
17: printab(a,b);

18: }
19: printab(a,b);

20: return 0;

21:}
22:int printab(int b, int a) {
23: printf("a:%d, b:%d\n",a,b);
24:}

Code similar to previously

I Call printab() for display, not printf()

Old Output
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

New Output
l5 a:0; b:0

l9 a:0; b:??

l14 a:10; b:10

l18 a:0; b:10

l20 a:15; b:10

l22 a:0; b:10

This is all inverted!

The trick comes from. . .

I printab’s parameters, which are inverted

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 84/127

Weird Code with Function Calls
1:int a;

2:int main() {
3: int b;

3: a=0;

4: b=a;

5: printab(a,b);

6: a += 5;

7: { int a;

8: printab(a,b);

9: }
10: a += 5;

11: { int b=a;

12: printab(a,b);

13: b += 5;

14: { int b=0;

15: printab(a,b);

16: }
17: printab(a,b);

18: }
19: printab(a,b);

20: return 0;

21:}
22:int printab(int b , int a) {
23: printf("a:%d, b:%d\n",a,b);
24:}

Code similar to previously

I Call printab() for display, not printf()

Old Output
l5 a: 0; b: 0

l9 a: ??; b: 0

l14 a: 10; b: 10

l18 a: 10; b: 0

l20 a: 10; b: 15

l22 a: 10; b: 0

New Output
l5 a:0; b:0

l9 a:0; b:??

l14 a:10; b:10

l18 a:0; b:10

l20 a:15; b:10

l22 a:0; b:10

This is all inverted!

The trick comes from. . .
I printab’s parameters, which are inverted

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 84/127

The keyword static

This little keyword has two (quite differing) meanings

When applied to global identifiers

I Reduces visibility: from “the whole project” to “this file” (as if it were local)

I Lifetime remains unchanged

I Java equivalent: private

When applied to local identifiers

I Increases lifetime: from “for this call” to “for ever” (as if it were global)

I Visibility remains unchanged

I Similar concept in Java: static

Visibility Lifetime
Functions Whole Project For Ever
Global Variable Whole Project For Ever

Static Global Variable This File Only For Ever
Static Local Variable Current Block For Ever

Local Variable Current Block Until End of Block

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 85/127

The keyword static

This little keyword has two (quite differing) meanings

When applied to global identifiers

I Reduces visibility: from “the whole project” to “this file” (as if it were local)

I Lifetime remains unchanged

I Java equivalent: private

When applied to local identifiers

I Increases lifetime: from “for this call” to “for ever” (as if it were global)

I Visibility remains unchanged

I Similar concept in Java: static

Visibility Lifetime
Functions Whole Project For Ever
Global Variable Whole Project For Ever

Static Global Variable This File Only For Ever
Static Local Variable Current Block For Ever

Local Variable Current Block Until End of Block

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 85/127

The keyword static

This little keyword has two (quite differing) meanings

When applied to global identifiers

I Reduces visibility: from “the whole project” to “this file” (as if it were local)

I Lifetime remains unchanged

I Java equivalent: private

When applied to local identifiers

I Increases lifetime: from “for this call” to “for ever” (as if it were global)

I Visibility remains unchanged

I Similar concept in Java: static

Visibility Lifetime
Functions Whole Project For Ever
Global Variable Whole Project For Ever
Static Global Variable This File Only For Ever
Static Local Variable Current Block For Ever
Local Variable Current Block Until End of Block

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 85/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

res

nextInt

Output

$ myprog

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

res

nextInt

Output

$ myprog

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

0res

nextInt

Output

$ myprog

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

1res

nextInt

Output

$ myprog

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

1res

nextInt

Output

$ myprog

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

res

nextInt

Output

$ myprog
next: 1

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

res

nextInt

Output

$ myprog
next: 1

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

1res

nextInt

Output

$ myprog
next: 1

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

2res

nextInt

Output

$ myprog
next: 1

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

2res

nextInt

Output

$ myprog
next: 1

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

res

nextInt

Output

$ myprog
next: 1
next: 2

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

More on Static Local Variables

int nextInt() {
static int res=0;

res+=1;

return res;

}

int main() {
printf("next:%d",nextInt());

printf("next:%d",nextInt());

return EXIT SUCCESS;

}
Stack

main

res

nextInt

Output

$ myprog
next: 1
next: 2
$

I The value remains from one call to another (initializer evaluated only once)

I This variable cannot live on the stack: would have been erased by another call

I Understanding where it lives require some more background on the system
(actually, the globals are not on the stack either)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 86/127

Processes Memory Layout

Primer from Next Year in System Course

I The memory of each process is split in 3 big segments

I Heap is for the manually managed memory (see in half an hour)

I If more stack frames needed, the size of the stack grows toward the heap
Conversely, the heap can grow toward the stack

I Between Heap and Stack, there is a hole

in the addressing space

I If that hole becomes full (stack reaches heap), the process runs out of memory

I This is a simplification, but the ideas are there

Data

Code+Globals

Heap

Dynamic Memory

Stack

Stack Frames

0 4Gb

Where do symbols live?
I Functions: in Data segment

I Globals: in Data segment

I Locals: in Stack segment

I Static Locals: in Data segment
(just like globals!)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 87/127

Processes Memory Layout

Primer from Next Year in System Course

I The memory of each process is split in 3 big segments

I Heap is for the manually managed memory (see in half an hour)

I If more stack frames needed, the size of the stack grows toward the heap
Conversely, the heap can grow toward the stack

I Between Heap and Stack, there is a hole

in the addressing space

I If that hole becomes full (stack reaches heap), the process runs out of memory

I This is a simplification, but the ideas are there

Data

Code+Globals

Heap

Dynamic Memory

Stack

Stack Frames

0 4Gb

Where do symbols live?
I Functions: in Data segment

I Globals: in Data segment

I Locals: in Stack segment

I Static Locals: in Data segment
(just like globals!)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 87/127

Processes Memory Layout

Primer from Next Year in System Course

I The memory of each process is split in 3 big segments

I Heap is for the manually managed memory (see in half an hour)

I If more stack frames needed, the size of the stack grows toward the heap
Conversely, the heap can grow toward the stack

I Between Heap and Stack, there is a hole

in the addressing space

I If that hole becomes full (stack reaches heap), the process runs out of memory

I This is a simplification, but the ideas are there

Data

Code+Globals

Heap

Dynamic Memory

Stack

Stack Frames
∅

0 4Gb

Where do symbols live?
I Functions: in Data segment

I Globals: in Data segment

I Locals: in Stack segment

I Static Locals: in Data segment
(just like globals!)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 87/127

Processes Memory Layout

Primer from Next Year in System Course

I The memory of each process is split in 3 big segments

I Heap is for the manually managed memory (see in half an hour)

I If more stack frames needed, the size of the stack grows toward the heap
Conversely, the heap can grow toward the stack

I Between Heap and Stack, there is a hole in the addressing space

I If that hole becomes full (stack reaches heap), the process runs out of memory

I This is a simplification, but the ideas are there

Data

Code+Globals

Heap

Dynamic Memory

Stack

Stack Frames
∅

0 4Gb

Where do symbols live?
I Functions: in Data segment

I Globals: in Data segment

I Locals: in Stack segment

I Static Locals: in Data segment
(just like globals!)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 87/127

Processes Memory Layout

Primer from Next Year in System Course

I The memory of each process is split in 3 big segments

I Heap is for the manually managed memory (see in half an hour)

I If more stack frames needed, the size of the stack grows toward the heap
Conversely, the heap can grow toward the stack

I Between Heap and Stack, there is a hole in the addressing space

I If that hole becomes full (stack reaches heap), the process runs out of memory

I This is a simplification, but the ideas are there

Data

Code+Globals

Heap

Dynamic Memory

Stack

Stack Frames
∅

0 4Gb

Where do symbols live?
I Functions: in Data segment

I Globals: in Data segment

I Locals: in Stack segment

I Static Locals: in Data segment
(just like globals!)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 87/127

More on Memory

Solving the Enigma of Static Locals Storage raises New Questions

I What is the addressing space?

; This is another name for “memory”

I How to get a valid mental representation of the memory?

; Think of a very large array of cells. Each cell is 1 byte (8 bits) wide.

.

42 43 44 45 46 47 48 49

I What is an address?

; Memory cells are numbered.
The address of a given memory cell is its number in rank

I Why the stack bottom at 4Gb?

; Because this is MAXINT on 32bits
And the picture supposed that we were in 32bits for simplicity sake.

I Where is my stack if my laptop does not have 4Gb?

I Within the process, we are speaking of virtual addresses
I They get converted into physical ones by the OS
I But this all is to be seen in RSA (not even RS – end of next year)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 88/127

More on Memory

Solving the Enigma of Static Locals Storage raises New Questions

I What is the addressing space? ; This is another name for “memory”

I How to get a valid mental representation of the memory?

; Think of a very large array of cells. Each cell is 1 byte (8 bits) wide.

.

42 43 44 45 46 47 48 49

I What is an address?

; Memory cells are numbered.
The address of a given memory cell is its number in rank

I Why the stack bottom at 4Gb?

; Because this is MAXINT on 32bits
And the picture supposed that we were in 32bits for simplicity sake.

I Where is my stack if my laptop does not have 4Gb?

I Within the process, we are speaking of virtual addresses
I They get converted into physical ones by the OS
I But this all is to be seen in RSA (not even RS – end of next year)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 88/127

More on Memory

Solving the Enigma of Static Locals Storage raises New Questions

I What is the addressing space? ; This is another name for “memory”

I How to get a valid mental representation of the memory?
; Think of a very large array of cells. Each cell is 1 byte (8 bits) wide.

.

42 43 44 45 46 47 48 49

I What is an address?

; Memory cells are numbered.
The address of a given memory cell is its number in rank

I Why the stack bottom at 4Gb?

; Because this is MAXINT on 32bits
And the picture supposed that we were in 32bits for simplicity sake.

I Where is my stack if my laptop does not have 4Gb?

I Within the process, we are speaking of virtual addresses
I They get converted into physical ones by the OS
I But this all is to be seen in RSA (not even RS – end of next year)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 88/127

More on Memory

Solving the Enigma of Static Locals Storage raises New Questions

I What is the addressing space? ; This is another name for “memory”

I How to get a valid mental representation of the memory?
; Think of a very large array of cells. Each cell is 1 byte (8 bits) wide.

.
42 43 44 45 46 47 48 49

I What is an address? ; Memory cells are numbered.
The address of a given memory cell is its number in rank

I Why the stack bottom at 4Gb?

; Because this is MAXINT on 32bits
And the picture supposed that we were in 32bits for simplicity sake.

I Where is my stack if my laptop does not have 4Gb?

I Within the process, we are speaking of virtual addresses
I They get converted into physical ones by the OS
I But this all is to be seen in RSA (not even RS – end of next year)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 88/127

More on Memory

Solving the Enigma of Static Locals Storage raises New Questions

I What is the addressing space? ; This is another name for “memory”

I How to get a valid mental representation of the memory?
; Think of a very large array of cells. Each cell is 1 byte (8 bits) wide.

.
42 43 44 45 46 47 48 49

I What is an address? ; Memory cells are numbered.
The address of a given memory cell is its number in rank

I Why the stack bottom at 4Gb? ; Because this is MAXINT on 32bits
And the picture supposed that we were in 32bits for simplicity sake.

I Where is my stack if my laptop does not have 4Gb?

I Within the process, we are speaking of virtual addresses
I They get converted into physical ones by the OS
I But this all is to be seen in RSA (not even RS – end of next year)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 88/127

More on Memory

Solving the Enigma of Static Locals Storage raises New Questions

I What is the addressing space? ; This is another name for “memory”

I How to get a valid mental representation of the memory?
; Think of a very large array of cells. Each cell is 1 byte (8 bits) wide.

.
42 43 44 45 46 47 48 49

I What is an address? ; Memory cells are numbered.
The address of a given memory cell is its number in rank

I Why the stack bottom at 4Gb? ; Because this is MAXINT on 32bits
And the picture supposed that we were in 32bits for simplicity sake.

I Where is my stack if my laptop does not have 4Gb?
I Within the process, we are speaking of virtual addresses
I They get converted into physical ones by the OS
I But this all is to be seen in RSA (not even RS – end of next year)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 88/127

Storing Data in Memory

What can get stored in a Memory Cell?

I It’s 8 bits long, so it can take 28 values

I The value range is thus [0; 255] (or [−127; 128] if signed)

How to store bigger values?

I For that, we aggregate memory cells, i.e. we interpret together adjacent cells

I int are stored on 4 cells Resulting range: [0; 28×4[= [0; 232[≈ [0; 4e10]

I short are stored on 2 cells Resulting range: [0; 216[= [0; 65 535]

Problem
I Impossible to interpret a memory area without infos on data type stored

I Remember: C memory is a big magma (never forget!)

I Veeery different from Java where you have introspection abilities

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 89/127

Chapter 3

Memory Management in C

Static Memory
Variables in C
Processes Memory Layout
Addresses

Pointers
Basics
Pointers vs. Arrays
Casting Pointers

Dynamic Memory
Memory Blocs and Pointers

Pointers

What is it?
I Variable storing a memory address: Pointer value = rank of a memory cell

I On 32 bits, I need 4 bytes to store an address since biggest address=232×8

(8 bytes on 64 bits)

I Pointers are often written in hexadecimal (just a convention)

I Most of the time, numerical value is meaningless; where it points to is crucial

0
x4

0
4

0
x4

0
5

0
x4

0
6

0
x4

0
7

0
x4

0
8

0
x4

0
9

0
x4

0
A

0
x4

0
B

0
x4

1
0

0
x4

1
1

0
x4

1
2

0
x4

1
3

0
x4

1
4

0
x4

1
5

0
x4

1
6

0
x4

1
7

0
x4

1
8

0
x4

1
9

0
x4

1
A

0
x4

1
B

0
x4

1
C

0
x4

1
D

0
x4

1
E

0
x4

1
F

0
x4

2
0

0
x4

2
1

0
x4

2
2

0
x4

2
3.

pointer p

0x414

But we can’t interpret memory areas w/o info on stored type!

I This information is given by the type of pointer

char* pc; a int* pi; 42

I It is possible to store the address of a pointer of a pointer: int ***p;

Remember: types are to be read from right to left

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 91/127

Pointers

What is it?
I Variable storing a memory address: Pointer value = rank of a memory cell

I On 32 bits, I need 4 bytes to store an address since biggest address=232×8

(8 bytes on 64 bits)

I Pointers are often written in hexadecimal (just a convention)

I Most of the time, numerical value is meaningless; where it points to is crucial

0
x4

0
4

0
x4

0
5

0
x4

0
6

0
x4

0
7

0
x4

0
8

0
x4

0
9

0
x4

0
A

0
x4

0
B

0
x4

1
0

0
x4

1
1

0
x4

1
2

0
x4

1
3

0
x4

1
4

0
x4

1
5

0
x4

1
6

0
x4

1
7

0
x4

1
8

0
x4

1
9

0
x4

1
A

0
x4

1
B

0
x4

1
C

0
x4

1
D

0
x4

1
E

0
x4

1
F

0
x4

2
0

0
x4

2
1

0
x4

2
2

0
x4

2
3.

pointer p

0x414

But we can’t interpret memory areas w/o info on stored type!

I This information is given by the type of pointer

char* pc; a int* pi; 42

I It is possible to store the address of a pointer of a pointer: int ***p;

Remember: types are to be read from right to left
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 91/127

Pointers Pitfalls
There is reasons why students don’t like pointers

Pitfall #1: * has a very heavy semantic

I This little char is very loaded of semantic in C

I Forget only one * somewhere, and you’re running into the segfault
Same thing when writing a * too much

Pitfall #2: * actually has two differing meanings

I int *p declares a pointer variable p which is a pointer to an integer value

I *p is then the pointed value, interpreted according to the pointer type

I (that’s actually three meanings when counting ×, the multiplication)

I int *p; p=12; selects where it points in memory

I int *p; *p=12; changes the memory in the pointed area

I Pascal was a bit more reasonable: INTEGER ^p vs. p^ (at least other order)

I In Java, there is no pointers, but reference to objects are close to that concept

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 92/127

Retrieving the address of something

Motivation
I Knowing that your pointer p points to 0x2342 is almost never relevant

I Knowing that it points to your variable i is what you need

This is what the & operator does

I int i=42;

int *p=&i;

42
i

p

(successive variables are (often) adjacent)

We can now explain how scanf “modifies its arguments”

int main() {
int a;
scanf("%d",&a);
}

Stack

?a

main

scanf

I scanf parameter: an address
”%d” tells how to interpret it

I That’s copied over, but that’s fine

I scanf can modify the a variable,
even if it’s not in its scope
(remember: C memory is a magma)

I other mystery:

variable amount of params
man stdarg ;)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 93/127

Retrieving the address of something

Motivation
I Knowing that your pointer p points to 0x2342 is almost never relevant

I Knowing that it points to your variable i is what you need

This is what the & operator does

I int i=42; int *p=&i; 42
i p

(successive variables are (often) adjacent)

We can now explain how scanf “modifies its arguments”

int main() {
int a;
scanf("%d",&a);
}

Stack

?a

main

scanf

I scanf parameter: an address
”%d” tells how to interpret it

I That’s copied over, but that’s fine

I scanf can modify the a variable,
even if it’s not in its scope
(remember: C memory is a magma)

I other mystery:

variable amount of params
man stdarg ;)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 93/127

Retrieving the address of something

Motivation
I Knowing that your pointer p points to 0x2342 is almost never relevant

I Knowing that it points to your variable i is what you need

This is what the & operator does

I int i=42; int *p=&i; 42
i p

(successive variables are (often) adjacent)

We can now explain how scanf “modifies its arguments”

int main() {
int a;
scanf("%d",&a);
}

Stack

?a

main

scanf

I scanf parameter: an address
”%d” tells how to interpret it

I That’s copied over, but that’s fine

I scanf can modify the a variable,
even if it’s not in its scope
(remember: C memory is a magma)

I other mystery:

variable amount of params
man stdarg ;)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 93/127

Retrieving the address of something

Motivation
I Knowing that your pointer p points to 0x2342 is almost never relevant

I Knowing that it points to your variable i is what you need

This is what the & operator does

I int i=42; int *p=&i; 42
i p

(successive variables are (often) adjacent)

We can now explain how scanf “modifies its arguments”

int main() {
int a;
scanf("%d",&a);
}

Stack

?a

main

scanf

I scanf parameter: an address
”%d” tells how to interpret it

I That’s copied over, but that’s fine

I scanf can modify the a variable,
even if it’s not in its scope
(remember: C memory is a magma)

I other mystery: variable amount of params
man stdarg ;)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 93/127

Fixing the triple() function

I Remember our broken triple() function, which were unable to triple its
argument

I That was because parameters are passed by value (copied over)

I To fix it, we simply use a pointer parameter

void triple(int *a) {
*a=(*a)*3;
return;

}

int main() {
int x=12;

triple(&x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

a

triple

Output

$ myprog

I Pointers are powerful tools (that’s why they are dangerous)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 94/127

Fixing the triple() function

I Remember our broken triple() function, which were unable to triple its
argument

I That was because parameters are passed by value (copied over)

I To fix it, we simply use a pointer parameter

void triple(int *a) {
*a=(*a)*3;
return;

}

int main() {
int x=12;

triple(&x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

a

triple

Output

$ myprog

I Pointers are powerful tools (that’s why they are dangerous)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 94/127

Fixing the triple() function

I Remember our broken triple() function, which were unable to triple its
argument

I That was because parameters are passed by value (copied over)

I To fix it, we simply use a pointer parameter

void triple(int *a) {
*a=(*a)*3;
return;

}

int main() {
int x=12;

triple(&x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

12x

main

a

triple

Output

$ myprog

I Pointers are powerful tools (that’s why they are dangerous)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 94/127

Fixing the triple() function

I Remember our broken triple() function, which were unable to triple its
argument

I That was because parameters are passed by value (copied over)

I To fix it, we simply use a pointer parameter

void triple(int *a) {
*a=(*a)*3;
return;

}

int main() {
int x=12;

triple(&x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

36x

main

a

triple

Output

$ myprog

I Pointers are powerful tools (that’s why they are dangerous)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 94/127

Fixing the triple() function

I Remember our broken triple() function, which were unable to triple its
argument

I That was because parameters are passed by value (copied over)

I To fix it, we simply use a pointer parameter

void triple(int *a) {
*a=(*a)*3;
return;

}

int main() {
int x=12;

triple(&x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

36x

main

a

triple

Output

$ myprog

I Pointers are powerful tools (that’s why they are dangerous)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 94/127

Fixing the triple() function

I Remember our broken triple() function, which were unable to triple its
argument

I That was because parameters are passed by value (copied over)

I To fix it, we simply use a pointer parameter

void triple(int *a) {
*a=(*a)*3;
return;

}

int main() {
int x=12;

triple(&x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

36x

main

a

triple

Output

$ myprog
x: 36

I Pointers are powerful tools (that’s why they are dangerous)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 94/127

Fixing the triple() function

I Remember our broken triple() function, which were unable to triple its
argument

I That was because parameters are passed by value (copied over)

I To fix it, we simply use a pointer parameter

void triple(int *a) {
*a=(*a)*3;
return;

}

int main() {
int x=12;

triple(&x);

printf("x: %d",x);

return EXIT SUCCESS;

}
Stack

36x

main

a

triple

Output

$ myprog
x: 36
$

I Pointers are powerful tools (that’s why they are dangerous)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 94/127

Pointers vs. Arrays

In C, Arrays are Pointers (at least, most of the time)

I Unfortunate heritage of C first years; One of the major pitfall for newcomers

I char name[32]; pointer to a reserved area of 32 bytes

I int ai[] = {0,1,2}; pointer to a reserved and inited area of 3 ints

I void max(int ai[]) ≈ void max(int *ai) Expects an int pointer

I void max(int ai[32]) Similar, but whole array is copied on stack

I When using name after char name[32] as if it were an automatic &
name, when looked at as pointer, is the address of the first array cell

I This explains why strings don’t take any & in scanf: they already are pointers

Considering Pointers as Arrays

I int *pi=. . . ; pi[3]; This is valid; Behave as expected

(no bound checking, as usual in C)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 95/127

Pointer Arithmetic

Adding and subtracting integers to pointers is valid

I It represents a shift in cell (not in bytes)

int *pi=0x400;

pi=pi+3;

printf("pi:%x\n",pi);

0
x4

0
0

0
x4

0
1

0
x4

0
2

0
x4

0
3

0
x4

0
4

0
x4

0
5

0
x4

0
6

0
x4

0
7

0
x4

0
8

0
x4

0
9

0
x4

0
A

0
x4

0
B

0
x4

0
C

0
x4

0
D

0
x4

0
E

0
x4

0
F

0
x4

1
0

0
x4

1
1

0
x4

1
2

0
x4

1
3

0
x4

1
4

0
x4

1
5

0
x4

1
6

0
x4

1
7

pointer p

before after

I Value change in *pi: value after= value before+sizeof(int)×3
because it points on integers

Subtracting 2 pointers is valid

I It gives the shift between them (in cells, not in byte)

Other arithmetic operations are not valid on pointers

Pointers, Arithmetic, and Arrays

I p[i] is equivalent to *(p+i) (yes, C notations about arrays are messy)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 96/127

Chapter 3

Memory Management in C

Static Memory
Variables in C
Processes Memory Layout
Addresses

Pointers
Basics
Pointers vs. Arrays
Casting Pointers

Dynamic Memory
Memory Blocs and Pointers

Casting Data

What is it?
I This is the well known int a = (int)b notation. More generally, (type)

I It is used to convert something in a type into something else

I Two meanings, depending on whether it’s applied on scalars or pointers

I Quite the same story in Java, actually

Casting Scalars: Converting values

I double d = 5.7;

5.7

int i = (int)d;

5

I Casting Scalars can lead to:
I Change the memory representation of the value
I Change the amount of memory needed to represent the value
I Lead to precision loss (!)

Casting Pointers: Changing the semantic
I It’s written exactly the same way . . . but the meaning is very different

I Let’s look again at the Java semantic of reference casting

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 98/127

Casting Data

What is it?
I This is the well known int a = (int)b notation. More generally, (type)

I It is used to convert something in a type into something else

I Two meanings, depending on whether it’s applied on scalars or pointers

I Quite the same story in Java, actually

Casting Scalars: Converting values

I double d = 5.7; 5.7

int i = (int)d; 5

I Casting Scalars can lead to:
I Change the memory representation of the value
I Change the amount of memory needed to represent the value
I Lead to precision loss (!)

Casting Pointers: Changing the semantic
I It’s written exactly the same way . . . but the meaning is very different

I Let’s look again at the Java semantic of reference casting

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 98/127

Casting Data

What is it?
I This is the well known int a = (int)b notation. More generally, (type)

I It is used to convert something in a type into something else

I Two meanings, depending on whether it’s applied on scalars or pointers

I Quite the same story in Java, actually

Casting Scalars: Converting values

I double d = 5.7; 5.7

int i = (int)d; 5

I Casting Scalars can lead to:
I Change the memory representation of the value
I Change the amount of memory needed to represent the value
I Lead to precision loss (!)

Casting Pointers: Changing the semantic
I It’s written exactly the same way . . . but the meaning is very different

I Let’s look again at the Java semantic of reference casting

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 98/127

Casting Objects in Java

Java Semantic Casting

Toto to = new Tutu();

Tutu tu = (Tutu)to;

Tutu

tu

to

as a Tutu

as a Toto

I Through tu, I consider the object to be a Tutu

I It does not change the value of the object, only what I expect from it

I Only valid if Tutu extends Toto (and useless if Toto extends Tutu)

Side note: Static vs. Dynamic typing is a creepy part of Java

I Casts relax constraints at compilation time; Enforced at execution time
That is what TypeCastException is made for

I Guessing which method gets called is sometimes excessively difficult
Check again TD4 of POO if you forgot

I But it’s hard to depreciate the Java typing system in a course on C. . .

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 99/127

Casting Pointers in C

They change the Pointer Semantic

I The numeric value of the pointer does not change

I But the dereferencing it completely different

I Also has a huge impact on pointer arithmetic

int a;

int *pi=&a;

char *pc=pi;

pi++;

pc++;

a pi pc

before

after

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 100/127

Casting Pointers in C

They change the Pointer Semantic

I The numeric value of the pointer does not change

I But the dereferencing it completely different

I Also has a huge impact on pointer arithmetic

int a;

int *pi=&a;

char *pc=pi;

pi++;

pc++;

a pi pc

before

after

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 100/127

Generic Pointers

Generic pointers are sometimes handy

I To describe pointers that can point to differing data
Example: in scanf, how to interpret the pointer is given by the format

I To describe pointers to raw data (ie, you don’t care about the pointed type)
Example: When copying memory chunk over, content does not matter

That is what void* is made for
I Modern compiler even allow you to do pointer arithmetic on them

supposing that sizeof(void)=1, which is . . . arbitrary

I Older compiler force you to cast them to char* before

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 101/127

Chapter 3

Memory Management in C

Static Memory
Variables in C
Processes Memory Layout
Addresses

Pointers
Basics
Pointers vs. Arrays
Casting Pointers

Dynamic Memory
Memory Blocs and Pointers

Dynamic Memory

Motivation
I Arrays are statically sized in C (i.e. their size must be known at compilation)

I It is forbidden to write:
int n;

scanf("%d",&n);

int tab[n];
because n is only known at execution

I (this is not true in C99, but C99 not widely spread yet)

Solution
I Directly request memory chunks from the system

I Manage them yourself

I And return them to the system when you’re done

Remember the Memory Layout of a Process

Data

Code+Globals

Heap

Dynamic Memory

Stack

Stack Frames
∅

0 4Gb
I The idea is to request memory from the heap

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 103/127

Requesting Memory Chunks from the heap

The several ways of doing so

I As usual, there is a high level and a low level API

I At low-level, the brk() syscall allows to move the heap boundary
And you are on your own to manage its content (emacs does it)

malloc() and friends

I This higher level API directly gives memory chunks in heap
and deal automatically with brk()

I There is only 3 functions to know

#include <stdlib.h>

void*malloc(int size) Request a new memory chunk
void free(void*p) Return a memory chunk

void*realloc(void*p,int size) Expend a memory chunk

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 104/127

Understanding malloc and friends

Function Semantic
I malloc() requests a new memory chunk and return the address of beginning

If there is not enough free memory, it returns NULL

Think of a land registry for the memory

I void *A=malloc(12); A

I void *B=malloc(5); A B

I free(A); B

I void *C=malloc(6); BC

I C=realloc(C,13); B C

As usual in C
I There is no protection mechanism here: Mess it up and you’ll get a segfault

I Two surviving strategies:
I Avoid issues through best practices
I Solve issues through debugging tools

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 105/127

Best Practices about Dynamic Memory

Rule #1: Only access to reserved areas

I Land Registry Analogy: Only build stuff on land that you own

int *A;

*A=1;

A=malloc(sizeof(int));

Error! A used before malloc!

(buy it before building)

int *A=malloc(sizeof(int));

free(1);

*A=1;

Error! A used after free!

(forget it after selling it)

I You’ll have similar symptoms in both case
I If you are lucky, segfault (error signaled where the fault is)
I If not, some memory pollution (probably a later segfault, harder to diagnose)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 106/127

Best Practices about Dynamic Memory

Rule #2: To any malloc(), one and only one free()
I If you forget the free(), there is a memory leak

I The system assumes that this area is used where it’s not anymore
I Ok to have a few memleaks. Too much of them will exhaust system resources
I Slows everything down (swapping), and malloc() will eventually return NULL

I If you call free() twice (double free), strange things will occur

int *A=malloc(12);

free(A);

int *B=malloc(12);

free(A);

; Probably frees B . . .
Unfriendly if A and B are in two separate modules

I That is why modern malloc implementations try to detect this situation
I And kill faulty program as soon as the error is detected

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap III : Memory Management in C 107/127

Chapter 4

Advanced C-Fu

Modular C
Organizing large C projects
Compiling Multi-Files Projects and Makefiles

The Many Ways of Messing Up in C
Syntax Pitfalls
Understanding gcc Error Messages
Messing Up With Memory

Doing a Game in C

Organizing large C projects

I You are free in C: many ways to organize your code, nothing is enforced

I Get organized by yourself, or you’ll get drown in your own code

Guidelines for Java programmers in C (Light and DIY object-orientation)

I Organize your code as several interacting classes

I Avoid inheritance by all means: ugly to mimick in C, often not helping anyway

I You can still get encapsulating and some of dynamic dispatch

I Each class becomes a module:
I A structure, grouping all fields of your class
I A set of functions acting on those structures (incl. constructor & destructor)

I Nothing is enforced; your code should remain clean (and your days pleasant)

I Code readability as main objective (you are the main reader, help the reader)

Forget about the performance, genericity, reusability . . . for now
We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass
up our opportunities in that critical 3%. — Donald Knuth

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 109/127

The point module

Changing each class into a module

I A structure, grouping all fields of your class

I A set of functions acting on those structures (incl. constructor & destructor)

typedef struct {
int x, y;

} point_t;

point_t *point_create(int x, int y);
void point_free(point_t *p);

void point_move(point_t *p, int dx, int dy);
void point_add(point_t *p1, point_t *p2);

Java C
References to objects Pointers to structures
Methods included in object Functions grouped by modules

Naming conventions at best
Dotted notation Receiver as first parameter

p.move(3,5) point move(p, 3,5)

Automatic garbage collection Manual memory handling

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 110/127

Full code of the point module

typedef struct {
int x, y;

} point_t;

point t *point create(int x, int y) {
point_t *res=malloc(sizeof(point_t));
res->x = x;
res->y = y;
return res;

}

void point free(point t *p) {
free(p);// plz still use a free function:

} // more extensible for future

void point move(point t *p,
int dx, int dy) {

p->x += dx; // p->x shortcut of (*p).x
p->y += dy;

}

void point add(point t *p1,
point t *p2) {

p1->x += p2->x;
p1->y += p2->y;

}

I This really feels as Java, and this is a good news:
I You can code in C and still organize your code as you’ve learned

I Missing: Hiding the implementation: How to have private methods and fields?
I Missing: Dynamic dispatch. Functions’ pointers can simulate this.
I Missing: Inheritance. No easy way (but several ugly ones ;)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 111/127

Having private methods in C modules

The File is the Compilation Unit

I Hidden methods must simply be marked static ⇒ visible from that file only

I This older habit explains why Java forces public classes to have their own file

How to make parts visible from outside? With header files!

I Regular C files named point.h containing structures & function prototypes

I Hide your implementation ⇒ hide the struct’s content (opaque structure)

point.h

typedef struct point point_t;

point_t *point_create(int x, int y);
void point_free(point_t *p);

void point_move(point_t *p, int dx, int dy);
void point_add(point_t *p1, point_t *p2);

point.c

#include "point.h"
struct point {

int x,y;
};

point_t *point_create(int x, int y) {
point_t *res = malloc(sizeof(point_t));
res->x = x;
res->y = y;
return res;

}
...

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 112/127

Dealing with the compiler’s stupidity

Problem: the C compiler is really prehistoric

I Complains when symbols get redefined (even if the definitions match)

I Problem when point.h ∈ square.h ∈ main.c and square.h ∈ main.c

I Multiple inclusion of point.h into main.c, leading to compilation error

Solution: fix the code before compiling

I Remember: the preprocessor changes the code presented to the compiler

I We need to hide the subsequent inclusions of files

point.h

#ifndef POINT H
#define POINT H
typedef struct point point_t;

point_t *point_create(int x, int y);
void point_free(point_t *p);

void point_move(point_t *p, int dx, int dy);
void point_add(point_t *p1, point_t *p2);
#endif /* POINT H */

I point.c remains unchanged

I This construct seems ugly first

I But this is the one true way

I Just works, simple and efficient

I Not sufficient on Windows.
C on Windows is pure masochism
(but not because of C)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 113/127

Advanced OOP in C

Dynamic dispatch

I Structures can contain pointers to function (but shouldn’t when possible)

typedef struct point *point_t; // forward decl
struct point {

int x, y;
void (*display)(point_t* p);

}

void my_display(point_t*p) {..}
...

p1->display = &my display;
...

(*(p1->display)) (p1); // just a call

Inheritance
I Including structures is a UGLY but working approach. Don’t do this for real
I Inheritance is over-sold anyway. You should never expose your inheritance tree

typedef struct particle {
point_t super; // whole structure copied over
int vx, vy;

} particle_t;

void particle_animate(particle_t *mp) {
mp->super.x = p1->vx;
mp->super.y = p1->vy;

}

I Any particle can even be casted into a point to retrieve x and y
I But NO SAFEGUARD here. So pain to debug, impossible to read, etc.
I Y U NO C++ (or Objective C) if you really need OOP in C??

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 114/127

Having many files in your project (one per module)

That’s a good habit

I Because a 500,000 lines file is hard to navigate

I Because we can compile each of them separately
I Remember: compilation = translation into assembly lang. + linking of ASM
I Translation: hard and takes time; Assembling the puzzle: much faster
I Multiple files allows to translate only the parts that changed

I Because several people can work on the same project w/o interfering

But harder to compile right

I Compilation: gcc -c point.c gcc -c square.c gcc -c main.c

It generates point.o, square.o, main.o containing the assembly translations

I Linking: gcc -o project point.o square.o main.o

I Tracking dependencies is a nightmare e.g. when header files are changed

I We need a specific tool for that

. It’s called make

I Even from eclipse, use makefiles. Obey the UNIX philosophy:

Write programs that do one thing and do it well. Write programs to work together.

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 115/127

Having many files in your project (one per module)

That’s a good habit

I Because a 500,000 lines file is hard to navigate

I Because we can compile each of them separately
I Remember: compilation = translation into assembly lang. + linking of ASM
I Translation: hard and takes time; Assembling the puzzle: much faster
I Multiple files allows to translate only the parts that changed

I Because several people can work on the same project w/o interfering

But harder to compile right

I Compilation: gcc -c point.c gcc -c square.c gcc -c main.c

It generates point.o, square.o, main.o containing the assembly translations

I Linking: gcc -o project point.o square.o main.o

I Tracking dependencies is a nightmare e.g. when header files are changed

I We need a specific tool for that

. It’s called make

I Even from eclipse, use makefiles. Obey the UNIX philosophy:

Write programs that do one thing and do it well. Write programs to work together.

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 115/127

Having many files in your project (one per module)

That’s a good habit

I Because a 500,000 lines file is hard to navigate

I Because we can compile each of them separately
I Remember: compilation = translation into assembly lang. + linking of ASM
I Translation: hard and takes time; Assembling the puzzle: much faster
I Multiple files allows to translate only the parts that changed

I Because several people can work on the same project w/o interfering

But harder to compile right

I Compilation: gcc -c point.c gcc -c square.c gcc -c main.c

It generates point.o, square.o, main.o containing the assembly translations

I Linking: gcc -o project point.o square.o main.o

I Tracking dependencies is a nightmare e.g. when header files are changed

I We need a specific tool for that. It’s called make

I Even from eclipse, use makefiles. Obey the UNIX philosophy:

Write programs that do one thing and do it well. Write programs to work together.

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 115/127

Make and Makefiles

Makefile: explaining the project building process
I Create a file named Makefile in your project, containing a set of rules

<target file>: <list of dependencies>

<command to build target from deps>

Simple Makefile

project: point.o square.o main.o
gcc point.o square.o main.o -o project

point.o: point.c point.h
gcc -c point.c

square.o: square.c square.h point.h
gcc -c square.c

main.o: main.c square.h point.h
gcc -c main.c

make already knows to build .o from .c

project: point.o square.o main.o
gcc point.o square.o main.o -o project

point.o: point.c point.h
square.o: square.c square.h point.h
main.o: main.c square.h point.h

make loves funky variable names

project: point.o square.o main.o
gcc $^ -o $@

I Builds first target by default; Specify another one if you want make clean

I make is used widely, not only for C. You could use it for you Java code!

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 116/127

Chapter 4

Advanced C-Fu

Modular C
Organizing large C projects
Compiling Multi-Files Projects and Makefiles

The Many Ways of Messing Up in C
Syntax Pitfalls
Understanding gcc Error Messages
Messing Up With Memory

Doing a Game in C

Classical errors with the for loop

for (i=0; i < 10; i+1)
printf("i=%d\n",i);

I Y U NO increment your counter??
(i+1 has no side effect)

for (i=0; i = 10; i++)
printf("i=%d\n",i);

I Y U NO test your counter??
(i=10 sets a new value)

for (i=0; i < 10; i++);
printf("i=%d\n",i);

I Y U NO enter your loop??
(the ; after the for closes the loop)

for (i=0, j=0; i < 10; i++)
printf("i=%d\n",i);

I Y U NO see when it’s correct??
, separate expressions, ; instructions

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 119/127

Classical errors with the for loop

for (i=0; i < 10; i+1)
printf("i=%d\n",i);

I Y U NO increment your counter??
(i+1 has no side effect)

for (i=0; i = 10; i++)
printf("i=%d\n",i);

I Y U NO test your counter??
(i=10 sets a new value)

for (i=0; i < 10; i++);
printf("i=%d\n",i);

I Y U NO enter your loop??
(the ; after the for closes the loop)

for (i=0, j=0; i < 10; i++)
printf("i=%d\n",i);

I Y U NO see when it’s correct??
, separate expressions, ; instructions

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 119/127

Classical errors with the for loop

for (i=0; i < 10; i+1)
printf("i=%d\n",i);

I Y U NO increment your counter??
(i+1 has no side effect)

for (i=0; i = 10; i++)
printf("i=%d\n",i);

I Y U NO test your counter??
(i=10 sets a new value)

for (i=0; i < 10; i++);
printf("i=%d\n",i);

I Y U NO enter your loop??
(the ; after the for closes the loop)

for (i=0, j=0; i < 10; i++)
printf("i=%d\n",i);

I Y U NO see when it’s correct??
, separate expressions, ; instructions

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 119/127

Classical errors with the for loop

for (i=0; i < 10; i+1)
printf("i=%d\n",i);

I Y U NO increment your counter??
(i+1 has no side effect)

for (i=0; i = 10; i++)
printf("i=%d\n",i);

I Y U NO test your counter??
(i=10 sets a new value)

for (i=0; i < 10; i++);
printf("i=%d\n",i);

I Y U NO enter your loop??
(the ; after the for closes the loop)

for (i=0, j=0; i < 10; i++)
printf("i=%d\n",i);

I Y U NO see when it’s correct??
, separate expressions, ; instructions

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 119/127

Classical errors with the for loop

for (i=0; i < 10; i+1)
printf("i=%d\n",i);

I Y U NO increment your counter??
(i+1 has no side effect)

for (i=0; i = 10; i++)
printf("i=%d\n",i);

I Y U NO test your counter??
(i=10 sets a new value)

for (i=0; i < 10; i++);
printf("i=%d\n",i);

I Y U NO enter your loop??
(the ; after the for closes the loop)

for (i=0, j=0; i < 10; i++)
printf("i=%d\n",i);

I Y U NO see when it’s correct??
, separate expressions, ; instructions

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 119/127

Beware of the vicious switch syntax!

int x = 2;
switch(x) {

case 2:
printf("Two\n");

case 3:
printf("Three\n");

}

I Prints both:
Two

Three

I Problem: missing break keywords

I Because in assembly, that’s a jump table

I So that’s a (sad) inheritance of assembly language

I And that’s very sad that this propagated to Java. . .

I This also explains why case values must be constant

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 120/127

Beware of the vicious switch syntax!

int x = 2;
switch(x) {

case 2:
printf("Two\n");

case 3:
printf("Three\n");

}

I Prints both:
Two

Three

I Problem: missing break keywords

I Because in assembly, that’s a jump table

I So that’s a (sad) inheritance of assembly language

I And that’s very sad that this propagated to Java. . .

I This also explains why case values must be constant

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 120/127

Understanding gcc error messages

gcc is user friendly. It’s just picky about its friends

But you have to pass -Wall -Wextra as parameter

Suggest parentheses around assignment used as truth value. . .

if (a=b)

I . . . if you really mean to erase a, then write if ((a=b))

I Else, you probably meant if (a==b)

I The compiler gives a meaning even to the weird

if ((a=b)!=0)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 121/127

Understanding gcc error messages

gcc is user friendly. It’s just picky about its friends

But you have to pass -Wall -Wextra as parameter

Suggest parentheses around assignment used as truth value. . .

if (a=b)

I . . . if you really mean to erase a, then write if ((a=b))

I Else, you probably meant if (a==b)

I The compiler gives a meaning even to the weird

if ((a=b)!=0)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 121/127

Return of functions

I warning: ’return’ with a value, in function returning void
Yeah that’s only a warning — keep calm and add -Werror

I Control reaches end of non void function: self explanatory (?)

Don’t do that
int my_function() {

if (x == 2)
return 1;

}

This is correct

int my_function() {
if (x == 2)

return 1;
return 0;

}

This is correct too

void my_function() {
if (x == 2)

printf("blah");
}

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 122/127

Return of functions

I warning: ’return’ with a value, in function returning void
Yeah that’s only a warning — keep calm and add -Werror

I Control reaches end of non void function: self explanatory (?)

Don’t do that
int my_function() {

if (x == 2)
return 1;

}

This is correct

int my_function() {
if (x == 2)

return 1;
return 0;

}

This is correct too

void my_function() {
if (x == 2)

printf("blah");
}

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 122/127

Return of functions

I warning: ’return’ with a value, in function returning void
Yeah that’s only a warning — keep calm and add -Werror

I Control reaches end of non void function: self explanatory (?)

Don’t do that
int my_function() {

if (x == 2)
return 1;

}

This is correct

int my_function() {
if (x == 2)

return 1;
return 0;

}

This is correct too

void my_function() {
if (x == 2)

printf("blah");
}

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 122/127

Declarations

Implicit declaration of function func

I The function was used before being declared

I Just warning; the creepy compiler assumes ”no parameter, returning integer”

I If you declare the function after its use, the message reads:

warning: conflicting types for ’func’
I and you are informed of where the ”declaring usage” occured

Too few/many arguments to function

I Good programmers have a rare ability: they try to read error messages!

Passing arg n of func from incompatible pointer type

I Seems innocuous, but often denotes (upcoming) subtle issue

Passing arg n of func makes pointer from integer without a cast

I The numerical value of pointers should not be messed with as in
int value=42;

int length=strlen(value);

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 123/127

Messing Up With Memory

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char *argv[]) {

char *truc = "constant string";
*truc = ’x’; // segfault
strcpy(truc, "toto"); // segfault
free(truc); // segfault
return 0;

}

int i = 42;
printf("%s",i); // invalid read

int *make_buff(int a) {
int buff[SIZE], cpt;
for (cpt=0; cpt<SIZE; cpt++)

buff[cpt] = a;
return buff; // pointer to invalid memory

}

char *buffer;
scanf("%s", buffer); // invalid write

char buffer[256]; // constants
for (i=0; i<1024; i++) // shouldn’t

buffer[i] = ’ ’; // change

But this aint fun: messing up with pointers is too easy
we’ll see in practical how to hunt down these issues with valgrind

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 124/127

Chapter 4

Advanced C-Fu

Modular C
Organizing large C projects
Compiling Multi-Files Projects and Makefiles

The Many Ways of Messing Up in C
Syntax Pitfalls
Understanding gcc Error Messages
Messing Up With Memory

Doing a Game in C

Doing a game in C

Mandatory elements

I A gameplay: an idea about what your game will be

I A game engine: a program that can interact with the player

I Some GFX: graphics, sounds, musics, etc.

I These may not suffice for a great game, but at least they are mandatory

Where to find the inspiration for your gameplay

I Kongregate, play.google.com or whatever.

I Many links on http://www.loria.fr/~quinson/Hacking/Curiosa/

Doing a game engine

I It’s actually easy (with SDL2, SFML or allegro)! That’s your assignment

I See http://www.loria.fr/~vthomas/enseignement/2013_JV_ESIAL/

Finding some GFX

I That’s not your assignment. It’s sufficient to find something online

I But please don’t steal your GFX. Free resources exist.
Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 126/127

http://www.loria.fr/~quinson/Hacking/Curiosa/
http://www.loria.fr/~vthomas/enseignement/2013_JV_ESIAL/

Logistics of the project

I Groups: 2 or 3 peoples (not 1, not 4). You can mix classes

I When: first week empty of lectures at Telecom Nancy (≈ end May)

I What: discuss per email with me so that we agree on an assignment

I How long: don’t assume you can do something in 2 weeks only

I Other constraints:
I Must be in C (or C++ if good reasons), under Linux (C is NOT portable)
I Must be rather original & involve some coding (no mastermind/memory please)
I Should induce a graphical interface, may contain an AI
I That’s very open: do what you would like to (one-time offer in your scholarship)

I What gets evaluated: report (5 pages max) + source code + oral defense
I A short public presentation: 10 lines description + screenshot + licensing info
I List of issues encountered and your solutions (no code!)
I Approximate amount of time spent per student and per task
I Exhaustive list of source of informations you’ve used

I You must get my approval before starting.
I Try talking to me after my teachings if I don’t answer my emails in time
I Don’t wait the week before the defenses or I’ll know ;)

Martin Quinson Mastering your Linux: C / Shell (2013-2014) Chap IV : Advanced C-Fu 127/127

	Introduction
	Introduction
	References
	Table of contents

	C and Unix
	Introduction
	C? UNIX? What is all this about?
	Why do we need to study C?
	Why do we need to study C and UNIX together?

	C as Second Language
	C vs. Java
	How to survive in C?
	Your first C program

	First steps in Unix
	Désignation des fichiers
	Protection des fichiers
	Using the terminal

	C as Second Language
	Syntax of the C language
	C Quick Reference
	Type Constructors
	Lexical Structure

	Interactions with the Environment
	Input/Output: Terminal and Files
	Command-line Arguments
	Interacting with Processes

	Associated Tools
	Preprocessor

	Memory Management in C
	Static Memory
	Variables in C
	Processes Memory Layout
	Addresses

	Pointers
	Basics
	Pointers vs. Arrays
	Casting Pointers

	Dynamic Memory
	Memory Blocs and Pointers

	Advanced C-Fu
	Modular C
	Organizing large C projects
	Compiling Multi-Files Projects and Makefiles

	The Many Ways of Messing Up in C
	Syntax Pitfalls
	Understanding gcc Error Messages
	Messing Up With Memory

	Doing a Game in C

